
Augmenting Crowdsourcing techniques with
Artificial Intelligence

Travis Archer
Morningside College

Sioux City, Iowa 51106
tra001@morningside.edu

Abstract
In this paper I show that, based on my research with Project SCENIC, artificial intelligence
(AI) can be used to augment and enhance crowdsourcing techniques. In Project SCENIC
(SCENIC is Crowdsourcing Enhanced by Neural-nets Interested in Cell-noise) I conducted
an experiment between two programs. The control group was a genetic algorithm that
created random images using Cell noise that users could rate. Based on these ratings, the
genetic algorithm threw out poorly scored images and combined or altered highly rated
images into new images to be rated. This evolution of images eventually lead to a higher
average score for the images. Meanwhile the other group seemed identical to the outside,
but a neural-net was taking user-scores from this group to alter its own perception of beauty.
When the neural-net was confident an image would be scored below average, the image was
removed from the study. By removing unpleasant images, the neural-net enabled users to
stay focused on more interesting images, instead of spending part of their time immediately
dismissing boring or unappealing images. The neural-net used many different criteria to
judge an image, including edge-detection, color relationships, and color diversity, amongst
others. Ideally, the neural-net would have enough grasp of what makes an image appeasing
to save humans the trouble of rating truly ugly or boring images. In reality, the augmented
group started out with roughly similar scores to the control group while the neural-net
became accustomed to what the users saw as beautiful. After enough time had passed,
the control group plateaued at a relatively high score, while the augmented group achieved
even higher average scores. Crowdsourcing is becoming increasingly used in research
applications. By augmenting that with artificial intelligence, I argue that results could be
found faster with less strain put on the users. While this technique may not be applicable
to all projects, many could save time and even save money.

Travis Archer
Morningside College

Sioux City, Iowa 51106
tra001@morningside.edu

1 Crowdsourcing and Artificial Intelligence Currently
Over the last decade crowdsourcing (also refered to as ’human-based computation’) has
emerged as a new tool to process large amounts of data that cannot be accurately processed
by computers. Crowdsourcing is the act of outsourcing tasks from an individual or small
group to a large crowd of users, giving each user a small chunk of the task to complete. A
prime example of crowdsourcing is the Amazon.com owned site MechanicalTurk, where a
large collection of users perform short tasks for businesses or groups. Each user does very
little work, but collectively it amounts to large results. More recently, DARPA launched
the Shredder challenge, awarding fifty thousand dollars to the first team to successfully
reconstruct 5 documents put through various shredding machines. Teams could use any
techniques they desired, and artificial intelligence and crowdsourcing were the primary
tactics used by teams. In the end, team “All Your Shreds Are Belong To U.S.” won with
an artificial intelligence that tried to pair chunks of paper together, then sent the result to
human testers to verify [1]. This is perhaps the most successful example of crowdsourcing
used to augment artificial intelligence. It was this that made me wonder if crowdsourcing
could in turn be augmented with artificial intelligence. I believe that in a Venn diagram
of crowdsourcing and artificial intelligence the efficiency peaks at the intersection. Project
SCENIC was a proof of concept to show that crowdsourcing combined with artificial intel-
ligence creates synergy, boosting efficiency beyond the sum of both parts.

2 Project SCENIC
SCENIC stands for SCENIC is Crowdsourcing Enhanced by Neural-nets Interested in Cell-
noise. SCENIC combines noise algorithms, crowdsourcing, genetic algorithms, neural-
nets, SQL, HTML, CSS, JavaScript, and C++. It was created to assess the synergy between
crowdsourcing and artificial intelligence. This would require a problem that needed to be
solved, something the average layman could easily provide input on, yet something too
difficult for an artificial intelligence to grasp on its own. While the field of computer vision
is quickly evolving, using computers to judge beauty is still in its infancy. There are various
projects interested in many types of beauty, such as the work done by D. Gray et al. with
facial beauty [3]. However, the area of abstract art is still relatively untouched, largely
because it is so subjective. Most authors agree that art, and especially abstract art, are
judged partially on the emotions elicited in the viewer. Seemingly an emotionless machine
would be incapable of properly judging abstract art. Yet nearly every human with computer
access has had some exposure to art, and should be able to judge an abstract image based
on its artistic value. This forms the problem that can be solved easily by humans but so far
has not been addressed with artificial intelligence.

2.1 General Structure
Project SCENIC is relatively simple in theory. Two sets of abstract images are randomly
generated, one the control group, one the experimental group. A user opens the webpage
and is presented with one of the images from an unknown set and asked to rate it on a scale

1

of one to five. After all the images have been rated, a genetic algorithm is used to ’breed’
the pictures. These children are the original image with slight mutations, or the result of
breeding with another image. Once the breeding process is done, the new images are rated
by users and the process repeats. Eventually, the average rating of the pictures should rise
in both groups. However, the experimental group is different in one critical way. In the
experimental group, after an image is generated it is rated by a neural net. If the rating is
below a given threshold then the image is dropped and is not rated by users. Before each
breeding session, the neural net trains itself based on the difference between its own rating
of an image and the user rating. In theory the experimental group will progress faster and
with less user interaction than the control group.

This structure is the perfect environment for crowdsourcing. Each user is presented with
a task that requires no special knowledge, only the ability to judge the aesthetic quality of
an image, which is a skill very few people lack. That means there is no learning curve or
barriers to entry. Each image is small and self-contained, with no real relation to any other
image, and each image is rated independently. That means there is no time commitment
required; a user can rate one image or a hundred.

2.2 Making abstract art
Unfortunately, a large data set is required to train an artificial intelligence, as well as obtain
a good sample for study. While there are easily thousands if not millions of pieces of
abstract art in the world of varying quality, collecting and prepping enough of them would
be extremely time consuming. Instead I turned to Cell noise, described by Steven Whorley
in 1996 [4]. Cell noise is extremely flexible, capable of creating many different shapes.
Cell noise works by scattering points across a surface, then assigning a value to a pixel by
its distance to the nth closest point. Altering n and combining different values of n creates
vastly different images. Using an n of 1 is refered to as F1, while an n of 2 is F2, and so on.
Combinations like F1 − F2 or F33 −F2 ∗ F1 are not uncommon. Altering the distance
function also creates remarkably different images, even with the same set of points. By
choosing a random distance function and creating a random combination of Fn distances,
a myriad of images can be quickly created. Once the value-map of the image is created by
the Cell Noise algorithm, a randomized gradient can be applied to create a finished image.

For this application four distance functions were used: Euclidean-Squared, Manhattan,
Quadratic, and Minkowski. The Euclidean distance function is the most obvious: distance =√

(∆x)2 + (∆y)2, used almost universally in physics and mathematics. Euclidean-Squared
removes the costly square-root function. As long as the image is normalized, this consid-
erably boosts speed while producing roughly the same image. The Euclidean function
generally creates images full of circles at F1. The Manhattan distance function is defined
as distance = |∆x|+|∆y|. This creates diamond shapes in the image at F1. The Quadratic
distance function is as it sounds, distance = (∆x)2 + (∆x)(∆y) + (∆y)2. This produces
elongated circular shapes. The result of these three functions can be seen in Figure 1.

2

Figure 1: Comparison of three distance functions and 3 different Fn equations. Each image
has the same number of points in the same places, but each is rendered differently by the
different settings.

The last distance function, the Minkowski distance function, is a generalization of all
other distance functions. It is defined as distance = m

√
|∆x|m + |∆y|m, with m being

the Minkowski coefficient. Depending on the number used for m, different images can
be made. At m = 2, the Minkowski function is equivalent to the Euclidean function. At
m = 1, it is equivalent to the Manhattan function. Higher values produce increasingly
abnormal shapes. While the Minkowski coefficient could have been varied with great ef-
fect, the Minkowski function is the most computationaly expensive of the four, and so only
m = 4 was used. A comparison of some Minkowski functions can be seen in Figure 2.
Finally, a gradient must be generated to convert the image from grayscale to color. Here a
gradient is defined as a set of colors with a position on a scale. The color of a point is found
by normalizing the image and determining which two colors the point would be between.
After that, linear interpolation is used to blend the two colors. The gradient provides more
than just colors to look at, it can in many cases provide extra structures to the image beyond
what the Cell noise produces. If two points are very close to each other in the gradient, a
hard edge is formed in the image, creating new objects. An example of this behavior can
be seen in Figure 3.

3

(a) m = 0.5 (b) m = 1.0 (c) m = 2.0 (d) m = 4.0

Figure 2: Comparison of four different Minkowski coefficients. Notice that m = 1 is
identical to the Manhattan function, while m = 2 reproduces the Euclidean function.

To create a random piece of abstract art, all of these must be combined. First the number
of points for the Cell noise function is randomly generated. Next, one of the four distance
function is randomly chosen, with Euclidean-Squared given a slightly higher weight and
Minkowski given a lower weight to improve speed. Then an Fn equation is generated by
choosing a random n between 1 and 7, then a random operator (sum, difference, quotient,
or product) and F (n + 1) is added to about half of the images. Finally a gradient is ran-
domly generated by defining colors for the 0.0 and 1.0 end-points, then creating a random
amount of points between the two with random colors. In addition a random seed is gen-
erated so that the image can be exactly reproduced from the above specifications at a later
date if necessary.

3 Breeding Pictures
Once all the images have been created, they are rated by the users on a scale of one to five.
After all the images have been rated, they are bred to create new images. To do this, each
image is given a set amount of offspring based on the image’s score. An image with a score
of five will get more children than an image with a score of one. The children are either
the result of combining the arguments with those of another image (known as breeding),
or by altering one of the arguments from the parent image (known as mutating). In most
genetic algorithms breeding is used in as much as ninety-nine percent of all cases while
mutating is used only one percent of the time. This is perfect for most problems because
it assumes there is a correct answer and slowly ascends towards that answer. However for
this problem there is no single definitive right answer.

Because of the intricacy of the images, combination would most often lead to dizzyingly
complex images that are too overwhelming or disjointed to be considered aesthetically
pleasing. On the other hand, by giving a highly rated image more children to mutate it
will branch out and experiment with different styles, creating an image that is similar to
the parent image but still distinctly different. For this reason, mutation occurs much more
frequently than breeding in this application. The probability of breeding is given by the
following equation: 49

80
− (score ∗ 9

80
). For an image with a score of five (already beautiful)

4

Figure 3: The image on the left becomes the image on the right after applying the gradient
seen in the center. Notice the added edges and structures created by the gradient.

this equation gives a probability of breeding of only five percent. Meanwhile an image with
a score of one, which has nothing to lose, has a probability of breeding of fifty percent.
Because each generation of images is the same size (500 images per set) and images with
higher scores have more children, not all children will fit in the new generation. For this
reason, the images are ordered according to the user-assigned score in decending order, and
the process is finished when 500 children have been created. This means that the process
generally completes before lower-scored images have a chance to breed, meaning their lin-
eage is lost forever. This process of natural selection means the new generation has a high
probability of having a higher average rating.

Once the breeding process is complete, the old images are deleted to save space, however
the arguments to recreate it are saved in the database. Then the new images are presented
to the crowd to rate, and the cycle continues. Eventually this process of breeding and nat-
ural selection should result in higher average ratings for each generation by encouraging
beautiful images to experiment and pruning ugly or boring images.

4 The Neural Net
The control group continues in the above fashion indefinitely, however the experimental
group uses a neural net to weed out images that are definitely undesirable. One danger of
crowdsourcing is user burn-out, where a user is ’burnt out’ on doing a menial task over and
over again. Many of the random images created are boring, and getting many such images
in succession can be tedious. By dropping these undesirable images, the neural net leaves
the user with more interesting images, reducing the tedium of the task at hand. This keeps
users interested longer, meaning each user in the crowd will rate more images individually,
reducing the time necessary to complete the set.

This all rests on the assumption that the neural net can do its job correctly. To do this,
the neural net rates an image based on eight numbers created from four functions of the
image. First and foremost the neural net creates an edge-map of the image by using the
Difference of Two Gaussians technique. This is performed by creating two copies of the
image, then using Gaussian blurring on each with a different kernel size. For this applica-

5

(a) Before

(b) Hue (c) Saturation (d) Value (e) Edges

Figure 4: The maps of each image created for the neural net.

tion I used kernel sizes of three and five. Then a new image is created by subtracting the
value of each pixel in one image from the cooresponding pixel in the other. This creates
a map of the edges and their clarity in a new image. An image with many shapes and ob-
jects will have a very active edge-map, while a very dull image will have a very inactive
edge-map. This is believed by many to be very similar to how the human eye preprocesses
images coming to the brain [5]. Once this map is created the average value is found as well
as the standard deviation.

Next, the image is converted from the Red-Green-Blue (RGB) color space to the Hue-
Saturation-Value (HSV) color space, also known as Hue-Saturation-Lightness (HSL). The
average and standard deviation of each of the three is found, each performing a different
function. The value (or lightness) map contains the basic structures of the image, so the
standard deviation coorelates to the number and size of structures in the image. The overall
saturation of an image can separate a very gray boring picture from a bright exciting image
Meanwhile an image with many distinct colors with have a high standard deviation of the
hue, while an image with only one or two colors will score low in this area. These six
values plus the two from the edge detection make up the eight inputs for the neural net. An
example of each of the four maps created can be seen in Figure 4.

The neural net itself is composed of an input layer, two hidden layers, and an output layer.
Most neural nets use a single hidden layer to increase efficiency, however the first hidden
layer in this case provides a special function. The first hidden layer contains four neurons,
each of which only connect to the two inputs in a given area. For instance, one neuron is
connected to the average and standard deviation of the hue, while another is connected to
the average and standard deviation of the edge-detection. In this way, each area is judged

6

independently first, then a value is sent up to the next layer. The theory here is that one
number from each area is more important than the other, yet it could be different for each
area. By using the first hidden layer to weigh one side of an area over the other, the neural-
net will eventually learn which side is more important and deliver more relevant results.
The second hidden layer has two neurons, while the output layer has one, which returns a
result between zero and one inclusively. This value is multiplied by five, rounded down,
and incremented by one. This produces an output between one and five inclusively. This is
the score given to the image by the artificial intelligence, and if it is below a threshold of
acceptability then the image is dropped and never seen by users. While these eight numbers
certainly can’t encompass all that makes an image beautiful in the eyes of a human, they
are enough to let a neural net judge when an image is too boring to be graded by humans.

5 Optimizations and Pitfalls
This process of creating four different maps of the image can be time-consuming, espe-
cially when the image is written to a PNG file, then must be read back into memory later to
be graded by the artificial intelligence. To optimize this process the neural net grades the
image just before it is written to file, while it is still in memory. Then the information from
the neural net is uploaded to the database along with the new image information.

Other optimizations were planned to save valuable server resources but were never en-
acted. One plan was to store the image arguments in the database and cache a set amount
of images, then have a supervisor program replenish that cache as each image is rated.
However, the server architecture does not allow CGI scripts to be called by a client when
a program is being run by the owner of the account, even if it is a daemon. Therefore, the
cache is as large as the quota on the server allows, and when the cache runs out the entire
set is bred to create the next generation. This shuts down the rating functionality during that
time, and so the rating page automatically reroutes to a waiting page after 10 consecutive
failed attempts to contact the server. This is important, as the breeding process generally
takes about six hours to complete.

This restriction required that the GetImage CGI script do much more than just return an
available image. Instead the script has to update the database of the last score input by
the user, pick a random image from one of the two sets, unstick images that have been
’checked out’ by a user for longer than ten minutes, and start the breeding process if no
images are available. By combining all this functionality into one program the efficiency
is increased dramatically, but the added complexity makes maintenance difficult. It also
leaves the system with a single vulnerability that is insurmountable on the server-side with
the given architecture: if a user is given the last image of the thousand produced for the two
sets, the breeding will not start until that user finishes grading it, even if the user forgets
about it and leaves the page open for hours. This is because the page will call the server
again after 10 minutes of activity to release that image and request a new one. However,
if that image is the only one left then the server will keep sending back to that user, even
if a hundred other users are ready and waiting. This race condition is unlikely, but still a

7

definite threat. To address this, the webpage itself will reroute to the waiting page if it is
idle for too long and recieves the same image three times in a row. This locks the process
for a half-hour at most, but is still better than allowing a rogue user to intentionally disrupt
the system.

One final issue faced was that in the unlikely event that the neural net rated all the images
in the experimental group below the threshold then the entire experimental group would
stop functioning altogether. This ‘genocide’ condition did occur in the second generation,
before the neural net had a chance to fully develop. The solution was to manually reset
the generation, and change the way the images are dropped. Instead of having the neu-
ral net drop images itself, it simply returns its score to the database and exits. After all
the images in the next generation have been graded, a separate program determines which
images to drop. If a given threshold would result in extinction for the set, then none are
dropped. Conversely, if the given threshold would result in no images being dropped, then
the threshold is raised to account for this.

6 Results
In the end, both groups plateaued at a certain point. This is likely due to the inherent
randomness of the creation process, meaning there will always be some images that are
ugly or boring. However, the experimental group plateaued at a higher average score than
the control group. After seven generations the control group plateaued at an average score
of 3.075 after 3500 user interactions. Meanwhile the experimental group had an average
score of 4.092 after 3192 user interactions. This score is based on the average score placed
by a human user, excluding those dropped by the neural net. These statistics can be found
in Figure 5.

Figure 5: The collected scores from each generation.

In the first generation the neural net had no prior training and gave every image a score of

8

exactly 2. In the second generation it had minimal training and resulted in the extinction
event described before. After a reset of the group the neural net continued to train, and by
the third generation was giving images unique scores. These scores were highly optimistic,
but the neural net eventually became better aclimated to the task and ended up between the
two groups. This isn’t surprising, as the experimental group averaged better partly because
the scores that were dropped weren’t included in the human average. By the seventh gener-
ation the experimental group greatly surpassed the control group, and the neural net scores
closely matched those of the human participants.

7 Potential Applications
The applications for this technique go far beyond the trivial example SCENIC provides.
Both SETI and NASA are releasing massive amounts of data to the public to categorize.
Undoubtedly they already use some hard-coded discriminating factors to weed out seri-
ously useless information. However, by utilizing the intersection between artificial intelli-
gence and crowdsourcing, they could possibly speed up the process considerably.

One area where this could be particularly useful is in a business setting. Data mining is
becoming increasingly popular in large corporations, and artificial intelligences are used
most often for the job. These same corporations are constantly fighting to keep employees
engaged on their work by blocking Facebook and removing Solitaire. Yet research like that
done by Henning et al. is showing that taking short breaks can improve overall efficiency
[2]. I believe these two issues need not be treated separately. Many crowdsourcing appli-
cations present the problem in the format of a game. If the data-mining were presented as
a game to employees, they could take breaks by playing the game and classify the data. In
doing so, the corporation would be getting useful output from employees even as they are
winding down and relaxing. Then the employee returns to his or her duties with improved
efficiency. The artificial intelligence will get large amounts of data to train with, and can
filter out tedious data that could be counter-productive to relaxing employees.

8 Conclusion
In this way, the neural net enhances the crowdsourcing by dropping undesirable images
and speeding up the rating process, while the crowdsourcing enhances the neural-net by
providing training data. This synergy improves the efficiency of the entire system more
than the sum of the two separately. The doors to such technology are only now opening,
and with the ever growing deluge of data piling up, I believe this technology will be seen
increasingly often.

9

References
[1] DARPA, (2011). DARPA Shredder Challenge.

http://archive.darpa.mil/shredderchallenge/

[2] Henning, R., JACQUES, P., KISSEL, G., SULLIVAN, A., AND ALTERAS-WEBB,
S. (1997). Frequent short rest breaks from computer work: effects on productivity and
well-being at two field sites. Ergonomics 40, 78-91.

[3] GRAY, D., YU, K., XU, W., AND GONG, Y. (2010). Predicting Facial Beauty with-
out Landmarks. In Proceedings of the European Conference on Computer Vision
(ECCV), Crete, Greece, September 2010.

[4] WORLEY, S. (1996). A cellular texture basis function. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques (SIGGRAPH
’96). ACM, New York, NY, USA, 291-294.

[5] YOUNG, R. (1987). The Gaussian derivative model for spatial vision: I. Retinal
mechanisms. Spatial Vision 2. 273293(21).

10

