
 

 

 

Evaluating the Use of Flowchart-based RAPTOR 

Programming in CS0 

 
Michael Thompson 

Division of Mathematics, Engineering, and Computer Science 

Loras College 

Dubuque, Iowa 52001 

michael.thompson@loras.edu  
 

 

 

Abstract 

 
The Introduction to Computer Science, or CS0, course can be challenging to teach 

effectively.  The purposes and pedagogical methods used in this course vary significantly.  

At Loras, it is a required foundational course for Computer Science and Management 

Information Systems majors, as well as a requirement for many majors in the Business 

program.  This paper looks at enhancing students’ learning experience by analyzing 

different pedagogical methods and challenges in teaching this course.  The primary focus 

of this study involves comparing the teaching of a flowchart-based programming 

environment (RAPTOR) with teaching general problem-solving techniques without using 

specific programming concepts or languages. The results suggest that using flowchart-

based programming can be beneficial to students’ problem-solving abilities and their 

ability to learn basic spreadsheet and database concepts with Microsoft Office. 



1 

 

1 Background 

It can be a challenge to effectively teach the Introduction to Computer Science, or CS0, 

course.  There are many different perspectives on how to teach non-major level 

computing courses. Various approaches to these courses were discussed at a panel 

discussion at the SIGCSE 2010 conference.  In this discussion, some of the points 

included questions regarding whether to focus on problem solving methods without 

programming, or whether programming components must be included in the course in 

order for students to understand how to express their ideas and solutions with the 

precision required by computers [1].  In addition, survey results presented at the SIGCSE 

2011 conference demonstrated that the amount of programming content and 

programming languages used in CS0 courses varied greatly across institutions.  The 

survey demonstrated that there is no clear consensus regarding the amount of 

programming in CS0, and that it ranges nearly uniformly from very little programming to 

all programming [2]. 

1.1 The CS0 Course at Loras 

At Loras, the CS0 course is CIT 110, Computing and Information Technology Basics.  It 

is a required course for both the Computer Science and Management Information 

Systems majors.  The Business program requires it for its majors. The course covers basic 

databases and spreadsheets in Microsoft Office, as well as general computer concepts 

relating to hardware and networks.  The CS and MIS majors share a common core of 

computing courses and CIT 110 is a prerequisite for many of the other courses in the 

core, including courses on databases, networks, and the introduction to programming CS1 

course.  Furthermore, while the upper-level courses in each major are primarily taught by 

faculty in the corresponding program, CIT 110 is taught by faculty from both the 

Computer Science and Management Information Systems programs.  Faculty found that 

the broad range of necessary learning outcomes needed in CIT 110 could not be 

satisfactorily met over the course of a semester.  As a result, faculty from different 

programs taught the course differently, focusing on the outcomes they felt were most 

important and ignoring or glossing over other outcomes.  Therefore, in the summer of 

2010, the CS and MIS faculty decided to replace the programming-related outcomes of 

the course with an overview of general problem solving techniques so the other outcomes 

could be met. 

When CIT 110 was taught in the fall of 2010, some faculty who taught the course with 

the new outcomes found that they had extra time at the end of the course.  They used this 

extra time to teach a brief introduction to programming.  At the conclusion of the 

semester, the faculty who did this felt that the inclusion of programming would have 



2 

 

helped to better inform their teaching of spreadsheet and database applications in 

Microsoft Office.  Due to this, we decided to experiment with the inclusion of a brief 

introduction to RAPTOR programming at the beginning of the course in lieu of the 

problem solving component. 

1.2 RAPTOR Programming 

RAPTOR is a flowchart-based programming environment that is designed to help 

students visualize algorithms while limiting the burden of syntax [3]. Loras has been 

using RAPTOR in its CS1 course for many years as an introduction to basic 

programming concepts before students are introduced to C++.  The RAPTOR interface 

provides students with an intuitive means of adding sequential, selection, and repetition 

structures to their flowcharts.  In addition, it has an easy to use graphics library that 

allows students to create interesting programs using animations with relative ease.  An 

example of the RAPTOR user interface while a program is running is shown in Figure 1, 

and an example of the graphics that can be easily created by a RAPTOR program is 

shown in Figure 2. 

 

Figure 1: The RAPTOR Programming Environment. 



3 

 

 

Figure 2: An Example of Graphics in RAPTOR. 

2 Programming or Problem Solving? 

In spring of 2011, it was decided to teach some sections of CIT 110 beginning with a 

focus on problem solving and others beginning with an introduction to RAPTOR 

programming in order to determine whether the perceived benefits of teaching RAPTOR 

early in the semester would be realized.  After the introductory RAPTOR and problem 

solving units, all sections were taught in parallel, with minor differences based on the 

instructors’ styles.  Common assignments and exam questions were developed in order to 

measure how much students learned about both problem solving and the Microsoft Office 

applications essential to the learning outcomes of the course. 

2.1 Methodology 

Three sections of CIT 110 were taught in spring of 2011.  During the first two weeks of 

the course, one section was taught using RAPTOR and two sections were taught using 

problem solving.  Prior to introducing these methods, students in all sections of the 

course received a survey that was designed to gauge each student’s overall interest in 

Computer Science, as well as their mathematical and computing background.  A similar 

survey was given at the end of the semester in order to determine how student attitudes 

changed over the course of the semester.  

The section teaching RAPTOR introduced students to programming in RAPTOR, making 

use of its animated graphics functionality.  Over this time, this section covered sequential, 



4 

 

selection, and repetition program control, as well as the use of variables and function 

calls. 

The sections covering problem solving introduced techniques based on a modified 

version of the “How to Program It” document [4], based off the ideas in the book “How 

to Solve It” by G. Polya [5].  The problem solving component focused on the ideas of 

understanding the problem, designing a solution to the problem, and evaluating the 

correctness of the solution.  When gaining an understanding of the problem, students 

were taught how to ask questions that led to a deeper knowledge of its specifics.  When 

designing their solutions, students created informal flowcharts written on paper that were 

designed to both solve the problem and handle any incorrect inputs. When evaluating this 

solution, students were taught how to define test cases for the purposes of testing how 

well their proposed solutions solved the problem and used these test cases to evaluate 

their flowcharts. 

Following the two-week introductions to either problem solving or programming in 

RAPTOR, all sections of the course were run essentially in parallel with some common 

assignments across sections.  For the purposes of addressing the question of whether 

teaching programming or problem solving would be more beneficial, three specific 

assignments were chosen.  One was the culminating assignment in Microsoft Excel, 

another was the culminating assignment in Microsoft Access, and the third was a data 

analysis project that students could choose to complete in either Excel or Access.  Each 

assignment was graded using a common rubric that evaluated how well students used the 

application-specific techniques required in the assignment.  In addition, each assignment 

was rated based on how well students demonstrated effective problem solving techniques 

using a problem solving rubric based on a problem solving rubric at the Schreyer Institute 

for Teaching Excellence at Penn State University [6]. 

This problem solving rubric focused on evaluating students’ analysis of the problem and 

translating this analysis to their solution in Access or Excel.  For instance, in the sections 

focusing on problem solving, students were taught to examine the inputs to a problem 

and find an acceptable range of values on the inputs, while students in the section being 

taught RAPTOR were not.  Then, in the problem solving rubric for Excel, students were 

expected to identify and handle the range of acceptable values using data Excel’s data 

validation functionality.  Students in all sections were taught data validation in Excel, but 

were not told how to apply it in the description of the Excel assignment. 

 

 



5 

 

2.2 Results 

The results of each assignment from the spring of 2011 are shown in the tables below.  

Table 1 contains the results of the raw scores (out of 100) and Table 2 contains the results 

of the problem solving rubric (out of 16). 

 

 
Excel 

 
Access 

 
Project 

 
Overall 

 
PS R 

 
PS R 

 
PS R 

 
PS R 

Mean 82.54 89.27 
 

71.78 81.46 
 

77.16 82.76 
 

77.59 84.60 

Std. 
Dev. 12.26 15.72 

 
20.36 15.45 

 
14.04 11.34 

 
16.21 14.73 

 

Table 1: Score Comparison Between Problem Solving (PS) and RAPTOR (R) Sections. 

 

 
Excel 

 
Access 

 
Project 

 
Overall 

 
PS R 

 
PS R 

 
PS R 

 
PS R 

Mean 12.39 13.96 
 

10.11 11.75 
 

12.55 13.20 
 

11.79 13.00 

Std. 
Dev. 2.27 2.36 

 
3.74 4.03 

 
2.43 1.83 

 
2.99 3.02 

 

Table 2: Problem Solving Comparison Between Problem Solving and RAPTOR Sections. 

The above data shows that students in the RAPTOR programming section scored 

consistently higher in both their raw and problem solving scores than students in sections 

where only problem solving techniques were taught.  Table 3 shows the comparison of 

the p-values obtained when comparing the overall assignment and problem solving scores 

between the sections. 

 

Raw Score 

Problem Solving 

Score 

P-value 0.003 0.006 

 

Table 3: P-values for Overall Problem Solving and Raw Scores. 

In addition, student interest in computing was measured through the surveys given at the 

beginning and end of the semester.  Students were asked how likely they were to take 

more computing courses in the future.  Analysis of these surveys shows that, overall, 



6 

 

student interest in taking another computing course declined slightly after taking CIT 

110.  However, interest declined more in the sections where problem solving was taught, 

compared to the section taught with RAPTOR.  Table 4 shows that while the percentage 

of students who lost interest in computing was about the same regardless of the teaching 

methodology, the percentage of students who became more interested in computing was 

nearly double in the section where RAPTOR was taught. 

 RAPTOR 

Section 

Problem Solving 

Sections 

Percent of Students with 

Increased Interest 
17.39% 9.30% 

Percent of Students with 

Decreased Interest 
30.43% 30.23% 

 

Table 4: Change in Student Interest in Computing. 

We have been working on identifying how successful students from each section of CIT 

110 have been in our CS1 course.  However, only three students from the spring have 

completed the CS1 course at this point, so there is insufficient data available. 

2.3 Analysis 

The results in Table 3 indicate that there is a statistically significant difference in both the 

raw and problem solving scores, favoring students who were taught RAPTOR 

programming.  It would be expected that giving students additional experience in using a 

program like RAPTOR would translate to success in other applications. However, the 

success of the RAPTOR students in problem solving is especially interesting given that 

one might expect that the techniques taught explicitly in the problem solving unit would 

have translated to better problem solving techniques on the assignments.  It is possible 

that the students who used RAPTOR developed an increased awareness of the need for 

well-defined parameters in a RAPTOR program when making the function calls 

necessary for their graphics and this translated to an understanding of the importance to 

include this in the solutions they were developing in Microsoft Office applications.  In 

addition, this result could be due to students’ level of comfort with the idea of calling 

functions. This could then translate into a less severe learning curve when transitioning to 

Office. 

In addition, the larger number of students who increased their interest in computing is 

likely due to the opportunity to easily create graphics and animations in RAPTOR.  The 



7 

 

fun of computing is much more apparent in RAPTOR programming than it is in working 

through problem statements and creating flowcharts, even though that is a valuable skill. 

3 Further Work in CIT 110 

In addition to the use of RAPTOR in CIT 110, we have been investigating other 

techniques to enhance student learning.  During the fall of 2011, sections of CIT 110 

were again taught beginning with either RAPTOR programming or problem solving.  

There were two common assignments that were graded using a common grading rubric, 

but not a problem solving rubric.  Overall, assignment scores in the problem solving 

sections were higher than those in the RAPTOR section, but the difference was not 

statistically significant. 

3.1 Electronic Textbooks 

Also during the fall of 2011, we taught CIT 110 without a traditional textbook and 

instead utilized MyITLab through Pearson Higher Education [7].  This was chosen 

because MyITLab provided the flexibility to choose specific electronic chapters from 

many of their textbooks.  This included texts involving computing concepts as well as 

Microsoft Office applications, which fit the broad range of topics covered in CIT 110 

quite well.  MyITLab also provided many online training simulations in Microsoft Excel 

and Access, as well as online learning materials for computing concepts in networks and 

hardware.  Overall, the instructors appreciated the flexibility that MyITLab provided in 

being able to choose chapters from many different books.  However, based on comments 

on surveys and classroom discussions, many students would have preferred having a 

traditional textbook instead of an electronic one.  In the end, we decided to move to a 

custom textbook through Pearson, which provided the desired flexibility, but also 

provided students with a more traditional text. 

In addition, while the online simulation exercises in MyITLab were valuable, students 

were not able to take as much advantage of them as we had initially hoped.  While 

students were able to successfully complete the online exercises, they were not able to 

apply the concepts from the simulations to new situations.  This is probably because they 

only focused on completing the next step in the simulations and failed to see the big 

picture.  In addition, the more complicated, automatically graded assignments provided 

through MyITLab were not as flexible in grading as we needed them to be, and we were 

not able to utilize them.  We have now returned to a more traditional method of teaching 

Microsoft Office applications. 

 



8 

 

3.2 Future Work 

Since RAPTOR programming appears to be an improvement over the problem solving 

technique, we will continue to work to integrate it into our curriculum for CIT 110.  

Although at this time it still does not seem practical to incorporate RAPTOR into all the 

sections of the course, given different instructor preferences and comfort with teaching 

RAPTOR.  Fortunately, this will provide the opportunity to continue to compare the 

effectiveness of teaching RAPTOR programming instead of problem solving.  In 

addition, we will continue to follow up on students who are continuing on to CS1 to see 

whether there is any correlation between the teaching method of CIT 110 and success in 

CS1. 

There are some other issues that would need to be addressed in order to fully integrate 

RATOR programming into CIT 110.  First, the two weeks available to teach RAPTOR 

does not seem sufficient to give students an opportunity to develop much depth in 

learning RAPTOR.  Before the changes in 2010, instructors who had introduced 

RAPTOR did so by spending three or four weeks of class covering it.  Therefore, two 

weeks is barely sufficient to introduce students to RAPTOR and allow them to create in-

depth programs.  Also, many of the topics taught in the problem solving component have 

value beyond the realm of computing, and those themes have a broader benefit for those 

students who are not majors in Computer Science or Management Information Systems.  

In the future, we would like to look into ways to integrate both the programming and 

problem solving components, if we can do it in such a way to maintain their benefits and 

also continue to effectively cover the other outcomes of the course. 

 

References 
 

[1]  J. Barr, S. Cooper, M. Goldweber and H. Walker, "What Everyone Needs to Know 

About Computation," in SIGCSE 2010, 2010.  

[2]  S. Davies, J. A. Polack-Wahl and K. Anewalt, "A Snapshot of Current Practices in 

Teaching the Introductory Programming Sequence," in SIGCSE 2011, 2011.  

[3]  M. C. Carlisle, "RAPTOR: a visual programming environment for teaching 

algorithmic problem solving," in SIGCSE 2005, 2005.  

[4]  S. Thompson, "Where do I begin? A Problem Solving Approach in Teaching 



9 

 

Functional Programming," in PLIP '97, 1997.  

[5]  G. Polya, How To Solve It, Second ed., Princeton, New Jersey: Princeton University 

Press, 1957.  

[6]  Schreyer Institute for Teaching Excellence, "Problem Solving Rubric," 2007. 

[Online]. Available: 

http://www.schreyerinstitute.psu.edu/pdf/ProblemSolvingRubric1.pdf. [Accessed 

January 2011]. 

[7]  Pearson Higher Education, "MyITLab," [Online]. Available: 

http://www.myitlab.com. [Accessed May 2011]. 

 

 

 


