

USING COMMON LINUX COMMANDS TO TRACE

THE ORIGINS OF POTENTIALLY ROGUE

PROCESSES WITHIN A LINUX HOST (VIRTUAL

MACHINE)

DENNIS GUSTER

SAINT CLOUD STATE UNIVERSITY

dcguster@stcloudstate.edu

Martin Smith

SAINT CLOUD STATE UNIVERSITY

smma0901@stcloudstate.edu

Laura Lebentritt

UNIVERSITY of Maryland University College

lauraleigh4097@att.net

ABSTRACT

The literature indicates that cloud computing offers many advantages, but also involves

new and substantial security risks. Because many virtual machines (VM) are often

configured in a cloud based architectures it is difficult to keep track of each service

running within the cloud. A very useful tool in evaluating the purpose of those numerous

ports is the command set provided by the LINUX operating system. This paper used a

complex remote procedure call (RPC) problem that generated a number of dynamically

defined ports which appeared as undefined as a back drop to illustrate how LINUX

commands could be used to trace the origin of what appeared to be rogue ports. It was

found that the suspected rogue ports were in fact defined by the RPC software and

legitimate. However, because their purpose was unknown to the system administrator that

installed the RPC the firewall definition did not get updated and traffic to the port was

unintentionally blocked. It was suggested that greater care be used when

defining/evaluating policy and the auditing process be recorded and automated through

using LINUX scripts.

mailto:dcguster@stcloudstate.edu
mailto:smma0901@stcloudstate.edu
mailto:lauraleigh4097@att.net

1

INTRODUCTION

Cloud computing offers many advantages, but also involves security risks [1]. Extending

the data trust strategy from the enterprise to a cloud architecture requires more than

encryption [8]. Given the complexities of a cloud it is often difficult to track the security

issue in cloud computing environments given the large number of virtual machines

involved [14]. Specifically, in today’s world of cloud based architectures it is difficult to

keep track of each service running within the cloud. In fact some IT professionals feel

that the ramifications of cloud computing and its security challenges are still unknown

[17]. Although, the hardware for a small cloud may only involve five physical computing

units, virtualization often increases the number of logical computers (virtual machines) to

a value in the hundreds. From a green computing perspective reducing hundreds of hosts

to a platform of 5 physical hosts is a major advancement. However, for the system

administrator the logical model is still very complex and can involve numerous levels of

abstraction through the use of virtual zones, virtual hosts, replication and virtual

networks. To the casual observer, given its small physical footprint, a cloud may not

seem that complex and may even be “disruptively simplified” [8].

Some security issues are unique to a cloud while others are present potentially on any

host supporting services. However, cloud computing makes the potential scope of

security issues occurring on the services level much more dangerous. Where before only

the target host might be affected, now the damage might extend to the entire cloud. This

is especially true if single sign-on is supported via the cloud’s active directory

authentication structure (LDAP). Therefore, there are shared security issues between

cloud and traditional computing and it is important to understand that a security issue in

traditional computing which is bad could become even worse in a cloud environment

[18]. While there should be policy and documentation in place to help a system

administration/security team in combating security threats, again the newness and

complexity of a cloud means that current policy may not be adequate for a migration to a

cloud architecture. In fact, many IT professional have stated that a whole new paradigm

is needed to deal with the added complexities of cloud computing [17].

Certainly, it has been established that security issues in a cloud are complex and merit

further investigation. This paper hopes to narrow the scope of such an investigation by

focusing on the basic concept of auditing the service level port assignments on a virtual

machine within a cloud and their potential influence on security within the whole cloud.

Generally speaking one would expect that there is policy in place to verify the rationale

for each service and its corresponding port. However, the sheer magnitude of services

running in the cloud and their complexity can make this a difficult undertaking. The

process of identifying the purpose of any given port is further complicated when complex

remote procedure calls are used which require multiple ports and some of those ports are

dynamically defined upon boot up of the host. Sound policy would involve being able to

link a port with a process identification number (or series of related PIDs), the UNIX ID

of the service owner, the command that started the process and the files the service has

open. In theory this information should all be available via a LINUX command such as

netstat –apeen. However, there are instances particularly when remote procedure calls

are used where this information is hidden. This paper will perform an audit of a virtual

2

machine within the author’s cloud and trace the origins and purpose of all TCP version 4

services, including the remote procedure calls and annotate the command set required to

trace the origins of each service. In some cases such as secure shell it is a simple process.

However, in the case of dynamically generated remote procedure call ports it can be a

fairly complex process.

REVIEW OF LITERATURE

While the literature makes it clear that cloud computing offers many advantages, but also

may involve many risks that need to be assessed [1]. In fact, many would agree that

security challenges are the biggest obstacle to the adoption of cloud services [14]. This in

part is due to numerous misconceptions about cloud security such as a lack of isolation of

data [16]. When in fact if when properly configured a cloud can offer an improved level

of trust beyond classical hosting solutions [8].

Cloud computing is still relatively new and the full ramifications of the unique security

concerns of this architecture are still unknown [17]. It therefore, becomes crucial to be

able to separate traditional security concerns from those that are in fact unique to a cloud

architecture [11]. Guidelines have been developed which allow users to select specific

security levels and become more aware of the security ramifications of cloud computing

[18]. One means of dealing with the uncharted risks inherent in cloud computing is to

employ a trusted third party. This party would use public key encryption in concert with

SSO (single sign on) and LDAP (lightweight directory access protocol) to ensure the

authentication, integrity and confidentiality of the system was assured [18]. Further, this

robust authentication schema can be supplemented on the data level with one of the latest

public key encryption algorithms [15]. However, the unique aspects of cloud computing

which encompass various delivery and deployment models present security issues that

sound authentication alone will not solve [15]. A good example of this is side channel

attacks [18]. In a common instance of this methodology a hacker obtains a virtual

machine (VM) on the same physical host as the VM of the target within a commercial

cloud and then mines the common physical memory to obtain authentication information

which will then in turn be used to log into that target. Attacks such as these indicate that

traditional perimeter security approaches will not be adequate and security must be

enhanced on the virtual machine level [16].

Part of the problem with devising a security strategy for cloud computing stems from the

lack of security metrics associated with the architecture. For example, cloud computing

can support a wide variety of applications. Specifically, an IaaS (infrastructure as a

service) client should be able to specify its security needs and hence flexibly defined

metrics are needed to clarify this process [17]. Because of the complexity of a cloud

perhaps one of the services running in that cloud needs to directly deal with security

issues. This idea has been term “policing as a service” in addition to providing data

safeguards this service attempts to empower the user by providing interactive monitoring

capabilities [17]. This fits with current thought about cloud design which emphasizes

centralization of vital services [10]. Even before the fundamental shift to cloud

computing the primary attack strategy moved away from attacks on the network and the

3

transport layer to the application layer so therefore security within the cloud needs to

succinctly address all layers. In other words, a user will be running his/her application on

somebody else’s hardware using somebody else’s software so therefore that somebody

else better have a sound cloud computing security strategy [5].

AUDITING THE PORTS

Although there are commonly UDP and TCP version 6 ports present in Linux based

virtual machines, to narrow the topic it was decided to concentrate the discussion on TCP

version 4 ports. To audit such ports the first step is relatively simple and involves using

the netstat command to display the basic configuration information.

guster@os:~$ netstat -a | more

tcp 0 0 *:40811 *:*

LISTEN

tcp 0 0 *:54478 *:*

LISTEN

tcp 0 0 *:sunrpc *:*

LISTEN

tcp 0 0 *:webmin *:*

LISTEN

tcp 0 0 *:ssh *:*

LISTEN

The first step in evaluating such information is to evaluate the known ports (the ones with

English names) and ascertain they are supposed to be running and are consistent with site

policy. Named ports typically will appear in the services file and that file can be used to

determine their numeric value. For example the WEBMIN port is displayed below and

has been assigned port 10000. This port listing is defined and maintained by IANA. It is

also possible to create a services.local file where site specific ports can be documented

and such an example is also displayed below. In this case the audit revealed that all three

of the named ports were legitimate. The SUNRPC port was needed to support the

centralized file system within the cloud that allowed for centralized storage/management

of data. Further, this file system could be exported to potentially all hosts in the cloud and

therefore a user would have his/her data follow him/her no matter which host he/she

logged into. Specifically, this file system is a common RPC (remote procedure call)

named NFS (network file system). The WEBMIN port was needed so that system

administrators could remotely manage the system and the SSH port was need so that

client would have secure virtual terminal access to the host. However, the other two ports

at this point remain unaccounted for.

guster@os:~$ cat /etc/services | grep webmin

webmin 10000/tcp

guster@os:~$ cat services.local

udptest 44444/udp #Guster’s special test port for udp

traffic

4

It is not unusual for remote procedure calls to be complex and hence use multiple ports.

To get a better understanding of this process let’s take a look at the structure of the

modules associated with the NFS daemon. One can see that there is a specific module

that deals with data concurrency issues (lockd), one that deals with authentication issues

(auth_rpcgss) and one that controls queries to the access control list (nfs_acl). Also note

that the port that ties all of the subparts together termed the “port map” (sunrpc) is also

listed.

guster@os:~$ lsmod | grep nfs

nfsd 281980 2

nfs 436929 1

lockd 90326 2 nfsd,nfs

fscache 61529 1 nfs

auth_rpcgss 53380 2 nfsd,nfs

nfs_acl 12883 2 nfsd,nfs

sunrpc 255224 12 nfsd,nfs,lockd,auth_rpcgss,nfs_acl

How then do these modules get linked to port addresses? Other than the port map

(sunrpc) and the prime NFS service itself which are defined in the service file, the rest of

the ports are dynamically assigned upon booting up the host. Which can make access

outside of the cloud (or even the host) tricky if some means of updating the firewall after

every reboot is not considered. Because RPCs use the client/server model it is important

to look at the port maps for both sides. In the example below 10.18.59.34 is the NFS

client and 10.18.59.35 is hosting the NFS service. On both sides, of course SUNRPC is

running to provide the port mapping. The status service provides crash-and-recovery

functions for the locking services and is needed on both the client and server. However,

note that the server is also running the NLOCKMANAGER which manages daemons

related to data locking and the (mount daemon) which answers requests from clients for

file system mounts. By reading the information from the port map below we can

reconcile one of the two unaccounted for ports from the original netstat output, 54478

which is providing the status function and therefore can now be deemed legitimate.

guster@os:~$ rpcinfo -p 10.18.59.34

 program vers proto port service

 100000 4 tcp 111 portmapper

 100000 3 tcp 111 portmapper

 100024 1 tcp 54478 status

guster@os:~$ rpcinfo -p 10.18.59.35

 program vers proto port service

 100000 4 tcp 111 portmapper

 100000 3 tcp 111 portmapper

 100024 1 tcp 41364 status

 100003 4 tcp 2049 nfs

 100021 4 tcp 40141 nlockmgr

 100005 3 tcp 54093 mountd

5

How then is data transferred between the client and server and how secure is it? By

displaying the file systems (df) we can see that the NFS file system is nfs.bcrc.local

(10.18.59.35) and is mounted on the client side as /myhome. The full connection

information can be obtained by using the netstat command and as expected the server

side port is 2049 as would be listed in the services file. However, the client port is 671 it

is protected and not in the services file. Its protected status is due to the fact that it is a

“multiplexed” client port, meaning multiple users on the client side will use the port

rather than forming their own connection when using the NFS service. This reduces the

amount connection management overhead.

guster@os:~$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sdbe 15480816 3826724 10867712 27% /

udev 2015964 4 2015960 1% /dev

tmpfs 809912 284 809628 1% /run

nfs.bcrc.local: 41283968 1180416 38006400 4% /myhome

guster@os:~$ netstat -tn | grep 2049

tcp 0 0 10.18.59.34:671 10.18.59.35:2049

ESTABLISHED

To make multiplexing work another addressing layer is needed. To illustrate this, the

packet sniffer TCPDUMP is used to trap a NFS packets. The packets trapped are

recorded in a file called dump2049 and one packet from that file is displayed below. Note

the source address: 10.18.59.34.1421250189. What appears to be a large undefined client

port is really a transaction ID (XID). Because the maximum port address space is only

64KB the number displayed, 1421250189, is too large. Its job is to uniquely identify a

data transaction and make sure it gets ultimately delivered to the correct user and session.

Interestingly, it is still possible to determine the client port by reading the dump. By

looking in the third row, second group of four hex numbers we see a value of 029f which

when converted to decimal yields a value of 671. Looking back at the connection

information from the netstat command we see that this value matches the client port. As

implemented here this version of NFS is not encrypted, although there are certainly

versions of NFS that are. Because this host is used for educational purposes (such as

illustrating security vulnerabilities) encryption is not deemed necessary. However, access

is limited to inside the cloud and a private network address used so that the service is not

available directly to the internet.

guster@os:~$ sudo tcpdump port 2049 -e -n -vvv -X -c111 > dump2049

guster@os:~$ cat dump2049 | more

10:02:20.062045 00:50:56:8c:05:a8 > 00:50:56:8c:0a:0e, ethertype IPv4 (0x0800),

length 338: (tos 0x0, ttl 64, id 2082, offset 0, flags [DF], proto TCP (6),

leng

th 324)10.18.59.34.1421250189 > 10.18.59.35.2049: 268 getattr fh 0,0/22

 0x0000: 4500 0144 0822 4000 4006 2bc2 0a12 3b22 E..D."@.@.+...;.

 0x0010: 0a12 3b23 029f 0801 3201 aa9c e815 37bb ..;.....2.....7.

 0x0020: 8018 577f 0707 0000 0101 080a c836 82d2 ..W..........6..

 0x0030: 8694 2242 8000 010c 54b6 8e8d 0000 0000 .."B....T.......

6

 0x0040: 0000 0002 0001 86a3 0000 0004 0000 0001

 0x0050: 0000 0001 0000 0030 01d3 297b 0000 000f 0..){....

 0x0060: 0000 6f73 2e62 6372 632e 6c6f 6361 6c00 ..os.bcrc.local.

 0x0070: 3be0 0471 3be0 0201 0000 0003 3be0 0201 ;..q;.......;...

 0x0080: 3be0 0466 3be0 0940 0000 0000 0000 0000 ;..f;..@........

 0x0090: 0000 0000 0000 0000 0000 0003 0000 0016

 0x00a0: 0000 0010 0100 0101 0000 0000 6c17 0c00 l...

 0x00b0: 6841 f8df 0000 0026 0000 0001 4f83 6c52 hA.....&....O.lR

 0x00c0: c20e 0000 5d94 0000 0000 0000 0000 0000 ]...........

 0x00d0: 0000 0002 0000 0059 7468 6973 2069 7320 Ythis.is.

 0x00e0: 6120 7365 6372 6574 2066 696c 6520 646f a.secret.file.do

 0x00f0: 6e27 7420 7465 6c6c 206f 7572 2063 6f6d n't.tell.our.com

 0x0100: 7065 7469 746f 7273 2061 7420 4d53 552d petitors.at.MSU-

 0x0110: 4d61 6e6b 6174 6f20 7468 6520 6b65 7977 Mankato.the.keyw

 0x0120: 6f72 6420 6973 2064 6f75 6768 6e75 7421 ord.is.doughnut!

 0x0130: 0a00 0000 0000 0009 0000 0002 0000 0018

 0x0140: 0030 0000 .0..

There still is one port unaccounted for, port 40811! A good strategy might be to try to

obtain the user, process ID and command that started the process/port. A sophisticated

version of the netstat command is used below and run as the root (via sudo). The results

are useful for the NFS status port (54478) and the port map (111). For example, port

54478 is owned by user 106 which is the statd (status daemon), running with process ID

1005 and was started by the command rpc.statd. However, the information is very limited

for port 40811 with only the user ID being provided which is 0 (root). The problem is that

the root starts lots of software and using the ID 0 for the root is a no brainer for a hacker.

So obviously another strategy is needed to track down the origins of this port. There is an

inode address list for the port 40811 which is 8379, however using that route proved

relatively ineffective, time consuming and complex. So it was decided to go to the heart

of the operating system and try to determine if there was useful information in the kernel

ring buffer.

guster@os:~$ sudo netstat -apeen |more

tcp 0.0.0.0:40811 0.0.0.0:* LISTEN 0 8379 -

tcp 0.0.0.0:54478 0.0.0.0:* LISTEN 106 681 1005/rpc.statd

tcp 0.0.0.0:111 0.0.0.0:* LISTEN 0 649 973/rpcbind

The dmesg command allows direct access to the kernel ring buffer log information. When

specifically searching for information on port 40811 the information below appeared. It

was clear that a connection attempt was being made from 10.18.59.34. This was

reassuring because that host was a trusted host within the same cloud and the NFS service

provider for the cloud.

guster@os:~$ dmesg -kTx | grep 40811 | more

kern :warn : [Wed Feb 5 12:55:22 2014] [UFW BLOCK] IN=eth0 OUT=

MAC=00:50:56:8c:05:a8:00:50:56:8c:0a:0e:08:00 SRC=10.18.59.

35 DST=10.18.59.34 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=18996 DF

PROTO=TCP SPT=744 DPT=40811 WINDOW=14600 RES=0x00 SYN URGP=0

7

To get a better idea of the characteristics of that connection attempt a packet sniffer was

employed. The session consisted of only SYN packets (request to connect) coming from

10.18.59.35 which were evidently not received because there was no response.

guster@os:~$ sudo tcpdump port 40811 -e -n -vvv -X -c111 > dump40811

guster@os:~$ cat dump40811

09:36:58.060989 00:50:56:8c:0a:0e > 00:50:56:8c:05:a8, ethertype IPv4 (0x0800),

length 74: (tos 0x0, ttl 64, id 23833, offset 0, flags [DF], proto TCP (6),

length 60)10.18.59.35.725 > 10.18.59.34.40811: Flags [S], cksum 0xf904

(correct), seq 2056391044, win 14600, options [mss 1460,sackOK,TS val

2257478464 ecr 0,nop,wscale 4], length 0

 0x0000: 4500 003c 5d19 4000 4006 d7d2 0a12 3b23 E..<].@.@.....;.

 0x0010: 0a12 3b22 02d5 9f6b 7a92 0984 0000 0000 ..;....kz.......

 0x0020: a002 3908 f904 0000 0204 05b4 0402 080a ..9.............

 0x0030: 868e 6340 0000 0000 0103 0304 ..c@........

09:37:14.092788 00:50:56:8c:0a:0e > 00:50:56:8c:05:a8, ethertype IPv4 (0x0800),

length 74: (tos 0x0, ttl 64, id 23834, offset 0, flags [DF], proto TCP (6),

length 60)10.18.59.35.725 > 10.18.59.34.40811: Flags [S], cksum 0xe95c

(correct), seq 2056391044, win 14600, options [mss 1460,sackOK,TS val

2257482472 ecr 0,nop,wscale 4], length 0

 0x0000: 4500 003c 5d1a 4000 4006 d7d1 0a12 3b23 E..<].@.@.....;.

 0x0010: 0a12 3b22 02d5 9f6b 7a92 0984 0000 0000 ..;....kz.......

 0x0020: a002 3908 e95c 0000 0204 05b4 0402 080a ..9..\..........

 0x0030: 868e 72e8 0000 0000 0103 0304 ..r.........

To determine if port 40811 was functional, a telnet session was tried and the result

logged. It was determined that the port was functional because a connection was made

and data could be transferred, although not intelligently because the telnet client was

unable to match the protocol that port 40811 was expecting.

guster@os:~$ sudo tcpdump port 40811 -e -n -vvv -X -c111 -i lo >> dump40811

guster@os:~$ telnet localhost 40811

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

letmein

Connection closed by foreign host.

guster@os:~$ sudo tcpdump port 40811 -e -n -vvv -X -c111 -i lo >> dump40811

guster@os:~$ cat dump40811 | more

10:20:43.417265 00:00:00:00:00:00 > 00:00:00:00:00:00, ethertype IPv4 (0x0800),

length 75: (tos 0x10, ttl 64, id 7566, offset 0

, flags [DF], proto TCP (6), length 61)

 127.0.0.1.44737 > 127.0.0.1.40811: Flags [P.], cksum 0xfe31 (incorrect ->

0xe856), seq 1:10, ack 1, win 513, options [nop,n

op,TS val 3359291472 ecr 3359287999], length 9

 0x0000: 4510 003d 1d8e 4000 4006 1f1b 7f00 0001 E..=..@.@.......

 0x0010: 7f00 0001 aec1 9f6b 7200 b734 9106 d419 kr..4....

 0x0020: 8018 0201 fe31 0000 0101 080a c83a b850 1.......:.P

 0x0030: c83a aabf 6c65 746d 6569 6e0d 0a .:..letmein..

8

10:20:43.419461 00:00:00:00:00:00 > 00:00:00:00:00:00, ethertype IPv4 (0x0800),

length 66: (tos 0x0, ttl 64, id 32422, offset 0

, flags [DF], proto TCP (6), length 52)

 127.0.0.1.40811 > 127.0.0.1.44737: Flags [.], cksum 0xfe28 (incorrect ->

0x9917), seq 1, ack 10, win 512, options [nop,nop,

TS val 3359291473 ecr 3359291472], length 0

 0x0000: 4500 0034 7ea6 4000 4006 be1b 7f00 0001 E..4~.@.@.......

 0x0010: 7f00 0001 9f6b aec1 9106 d419 7200 b73d k......r..=

 0x0020: 8010 0200 fe28 0000 0101 080a c83a b851 (.......:.Q

 0x0030: c83a b850 .:.P

A quick look at the UNIX firewall log verifies that the traffic was in fact being blocked

on the firewall level. This is further confirmed by trying to telnet to port 40811 from the

host nfs (10.18.59.35). So on the surface it appears that port 40811 could be a legitimate

port that is used by the NFS service, but communication is being blocked by the firewall.

Certainly based on the investigation herein there does not appear to be any dangerous

traffic getting to that port. However, further investigation is warranted.

guster@os:/var/log$ sudo cat ufw.log | more

Feb 23 11:47:44 eros kernel: [14738071.383243] [UFW BLOCK] IN=eth0 OUT=

MAC=0e:50:56:8c:05:a6:00:50:56:8c:8a:0f:08:00 SRC=10.18.59.35

DST=10.18.59.34 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=52280 DF PROTO=TCP

SPT=1009 DPT=40811 WINDOW=14600 RES=0x00 SYN URGP=0

guster@nfs:~$ telnet 10.18.59.34 40811

Trying 10.18.59.34...

telnet: Unable to connect to remote host: Connection timed out

DISCUSSION/CONCLUSIONS

Most installations adopting a cloud architecture can be expected to have sound policy in

place regarding port assignment. Typically, the ports that are supporting services are

defined through a services file and there is documentation that describes their need and

purpose. The example used in this paper illustrated that when complex remote procedure

calls are used that additional ports can be generated dynamically and may slip through or

affect the efficiency of the defined security policy.

The example used herein involving port 40811 was a good example of a port that

appeared to have been created by malware used by hackers to perhaps provide them a

“back door” to the host. However, this potentially rogue port was created by the

installation of the NFS software. Therefore, it is critical when installing or updating

software to take a snapshot of the port structure and compare the before and after status

of the ports. In the case of ports being defined dynamically knowing the purpose is

critical and the process or command set to determine that process must be well defined.

In the example used herein it was a multistep process using several LINUX commands. If

9

the process was well documented the process could be streamlined and performed

quicker.

The primary sentinel for filtering out bad data coming into the cloud or within the cloud,

of course, would be the firewall. It is common place to have a firewall at the internet

access point of the cloud and other firewalls within the cloud even down to the host level.

In the case of port 40811 the host level firewall prevented the client process from the host

nfs from even forming a connection and this block was recorded in the UNIX firewall

log. Log files such as these are valuable in not only detecting problems, but in evaluating

if policy is being followed and if it is its degree of effectiveness. The fact that this

legitimate port was blocked relates to the local firewall policy which basically states to

block all ports initially and then open only those truly needed as defined by policy.

Certainly this is the correct policy but it results in a legitimate port being blocked

occasionally. This is especially true when that port is being generated dynamically by a

complex remote procedure call. In addition to issues with unknown ports appearing

complex remote procedure call can also create other dangerous security issues. In some

cases the RPC’s require no authentication in other cases they allow inheritance of rights.

For example, a user of the RPC on host “A” may have super user rights and unless

specifically limited may carry the same rights set to “host “B”. For example, if this is a

concern in an NFS application there is a “nosuid” parameter that can be set to combat this

inheritance problem.

In performing the audit to trace down the rogue port, it is clear that commands provided

by the LINUX operating system were quite effective. However, determining which

commands and options to use was not a simple process. In fact, the process often

involves trial and error and how quickly it can be performed is a function of the

experience of the investigator. A cloud installation would be well advised to document

and automate the process through scripts so that the code can be reused which in the long

run will be quicker and more cost effective. However, there will still be new cases

occurring where the problem must be attacked from scratch so having an analyst on staff

that truly knows LINUX and how it interacts with the cloud/network infrastructure will

be invaluable. Too often upper level management assumes that they can rely totally on an

icon based tools, but what happens when there is no icon to solve the problem available?

This culture has reduced the number of such analysts needed, but in cases where new

problems need to be solved there is still a place for the human problem solver with strong

critical thinking skill and LINUX commands are a powerful tool which can assist

him/her.

REFERENCES

[1] Anthes, G. (Nov. 2010). Security in the cloud. Communications of the ACM , vol. 53

Issue 11, pp.16-18.

10

[2] Basak, D., Toshniwal, R., Maskalik, S. (et.al). (Dec 2010). Virtualizing networking

and security in the cloud. ACM SIGOPS Operating Systems Review, vol. 44 Issue 4, pp.

86-94, Retrieved from http://bit.ly/1fj5ICO

[3] Bohli, J., Gruschka, N., Jensen, M., (et.al) (July-Aug 2013). Security and Privacy-

Enhancing Multicloud Architectures. IEEE Transactions on Dependable and Secure

Computing, vol. 10, no. 4, pp. 212-224. Retrieved from

http://www.computer.org.ezproxy.umuc.edu/csdl/trans/tq/2013/04/ttq2013040212.html

[4] Caron, E., Le, A., Lefray,A., Toinard,C. Definition of Security Metrics for the Cloud

Computing and Security-Aware Virtual Machine Placement Algorithms. International

Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery,

pp.125-131. Retrieved from

http://www.computer.org.ezproxy.umuc.edu/csdl/proceedings/cyberc/2013/5106/00/5106

a125.pdf

[5] Green, M. (Jan-Feb 2013). The Threat in the Cloud. IEEE Security & Privacy, vol. 11,

no. 1, pp. 86-89, Retrieved from

http://www.computer.org.ezproxy.umuc.edu/csdl/mags/sp/2013/01/msp2013010086.html

[6] Guster, D. C., Lee, O. F., & Rogers, D. C. (2011). Pitfalls of devising a security

policy in virtualized hosts. Journal of Information Security Research, 2(2), 75-83.

[7] Hyman, P. (June 2013). Augmented-reality glasses bring cloud security into sharp

focus. Communications of the ACM, vol. 56 Issue 6, pp. 18-20. Retrieved from

http://bit.ly/MGQGyW

 [8] Jules, A., Oprea, A. (Feb 2013). New approaches to security and availability for

cloud data. Communications of the ACM, vol. 56, issue. 2, pp. 64-73. Retrieved from

http://bit.ly/1gz6XDh

[9] Kaufman, L. (July-Aug. 2010). Can Public-Cloud Security Meet Its Unique

Challenges?. IEEE Security & Privacy, vol. 8, no. 4, pp. 55-57. Retrieved from

http://doi.ieeecomputersociety.org.ezproxy.umuc.edu/10.1109/MSP.2010.120

[10] Lesk, M. (May-June 2012). The Clouds Roll By. IEEE Security & Privacy, vol. 10,

no. 3, pp. 84-87, Retrieved from

http://www.computer.org.ezproxy.umuc.edu/csdl/mags/sp/2012/03/msp2012030084.html

[11] Mell, P. (July-Aug 2012). What’s Special about Cloud Security?. IT Professional,

vol. 14, no. 4, pp. 6-8, Retrieved from

http://www.computer.org.ezproxy.umuc.edu/csdl/mags/it/2012/04/mit2012040006.html

[12] Roberts, J., Al-Hamdani, W. (2011) Proceedings from the 2011 Information Security

Curriculum Development Conference. Who can you trust in the cloud?: a review of

security issues within cloud computing. Pages 15-19. Retrieved from http://bit.ly/1bfH3jn

http://bit.ly/1fj5ICO
http://www.computer.org.ezproxy.umuc.edu/csdl/trans/tq/2013/04/ttq2013040212.html
http://www.computer.org.ezproxy.umuc.edu/csdl/proceedings/cyberc/2013/5106/00/5106a125.pdf
http://www.computer.org.ezproxy.umuc.edu/csdl/proceedings/cyberc/2013/5106/00/5106a125.pdf
http://www.computer.org.ezproxy.umuc.edu/csdl/mags/sp/2013/01/msp2013010086.html
http://bit.ly/MGQGyW
http://bit.ly/1gz6XDh
http://doi.ieeecomputersociety.org.ezproxy.umuc.edu/10.1109/MSP.2010.120
http://www.computer.org.ezproxy.umuc.edu/csdl/mags/sp/2012/03/msp2012030084.html
http://www.computer.org.ezproxy.umuc.edu/csdl/mags/it/2012/04/mit2012040006.html
http://bit.ly/1bfH3jn

11

[13] Seo, S., Nabeel, M., Ding, X. (et.al). (Aug 2013). An Efficient Certificateless

Encryption for Secure Data Sharing in Public Clouds. IEEE Transactions on Knowledge

and Data Engineering, 05 Aug. 2013. IEEE computer Society Digital Library. Retrieved

from http://www.computer.org.ezproxy.umuc.edu/csdl/trans/tk/preprint/06574849.pdf

[14] Sun, D., Chang, G., Sun, L., Wang, X. (2011). Surveying and Analyzing Security,

Privacy and Trust Issues in Cloud Computing Environments. Procedia Engineering, vol.

15, pp. 2852-2856.

[15] Takabi, H., Joshi, J., Ahn, G. (Nov-Dec 2010). Security and Privacy Challenges in

Cloud Computing Enviroments. IEEE Security & Privacy, vol. 8, no. 6, pp. 24-31,

Retrieved from

http://www.computer.org.ezproxy.umuc.edu/csdl/mags/sp/2010/06/msp2010060024.html

[16] Viega, J. (July-Aug. 2012). Cloud Security: Not a Problem. IEEE Security &

Privacy, vol. 10, no. 4, pg.3. Retrieved from

http://doi.ieeecomputersociety.org.ezproxy.umuc.edu/10.1109/MSP.2012.93

 [17] Zargari, S., Smith, A. (2013). Policing as a Service in the Cloud. Proceedings from

2013 Fourth International Conference on Emerging Intelligent Data and Web

Technologies. Retrieved from

http://www.computer.org.ezproxy.umuc.edu/csdl/proceedings/eidwt/2013/2141/00/5044a

589.pdf

 [18] Zissis, D., Lekkas, D. (March 2012). Addressing cloud computing security issues.

Future Generation Computer Systems, vol. 28, issue 3, pp. 583-592, Retrieved from

http://www.sciencedirect.com.ezproxy.umuc.edu/science/article/pii/S0167739X10002554

http://www.computer.org.ezproxy.umuc.edu/csdl/trans/tk/preprint/06574849.pdf
http://www.computer.org.ezproxy.umuc.edu/csdl/mags/sp/2010/06/msp2010060024.html
http://doi.ieeecomputersociety.org.ezproxy.umuc.edu/10.1109/MSP.2012.93
http://www.computer.org.ezproxy.umuc.edu/csdl/proceedings/eidwt/2013/2141/00/5044a589.pdf
http://www.computer.org.ezproxy.umuc.edu/csdl/proceedings/eidwt/2013/2141/00/5044a589.pdf
http://www.sciencedirect.com.ezproxy.umuc.edu/science/article/pii/S0167739X10002554
http://www.sciencedirect.com.ezproxy.umuc.edu/science/article/pii/S0167739X10002554

