

Designing Nanostructures with DNA

Connor Uhlman Tony Clark Jamie Ethington

Computer Science Computer Science Computer Science

Simpson College

Indianola, IA 50125

connor.uhlman@my.simps

on.edu

Simpson College

Indianola, IA 50125

tony.clark@my.simpso

n.edu

Simpson College

Indianola, IA 50125

jamie.ethington@my.simps

on.edu

Abstract

 The program we are working on is part of a project to design DNA

nanostructures. The idea is to form triangular structures, which can then be used to

create 3D or 2D shapes. Since DNA strands have significant storage potential, use of

these nanostructures could be the next big gain in terms of storage capacity of

computers in relation to technology size. In addition to computing applications, DNA

nanostructures could be used for the purpose of drug delivery, which would allow

doctors to transport medicine to a specific part of a patient’s body. Whatever

application they may be used for, the application of DNA nanostructures is a subject

well worth looking into. For the past 3-4 years, our chemistry department has done

research with DNA origami. Several computational tasks have been identified that

are currently solved manually.

 Our task was to develop a program that could test two sequences of DNA and

determine if they matched. If there is a match detected, the program should then

change the sequence in a way that the new sequence doesn’t match any existing

sequences. In order to match, the two sequences need to have corresponding

nucleotides along the length of the sequence. Our program’s inputs are two

sequences of DNA. We then reverse one of the sequences so that they have matching

orientation and then change each nucleotide along the sequence to its

corresponding nucleotide. Our program then uses a hash table to search for

matching sequences of consecutive nucleotides of specified length. When we find

matches, we need to change the bases to ensure that they no longer match. The

reason we are doing this is for structural integrity. One way to think of this problem

is in terms of different construction components. The step of changing matching

bases helps ensure that, during the building process, “bolts” and “screws” go in the

spots they need to go, while “staples” or “nails” only are used where they are

specified.

 Our program is able to find matches. Unfortunately, when we test it on large

sequences, it runs slowly. Originally, we used a brute force algorithm, but we

changed our method and used a hash table to find matches, which was faster. That

being said, our program still runs slowly in its current stage. In the future, our

program will be combined with algorithms that perform other processes for

construction of DNA nanostructures, such as setting the melting temperature of our

structures. These additions will complete our program, which will be used by

students in our school’s chemistry department.

Initial Approaches

 The original method that was written to check for matches was a brute force

method that used linear searches. It would take as arguments two strings that

represented two strands of DNA. It would then use loops to perform a linear search

that checked if the two strings had 6 of the same characters in a sequence. For small

strings such as our original sequences of twelve characters, this method worked fine

and ran relatively fast. When tested with longer strings the run time began to

increase by very large amounts. It was decided that this would be problematic

while expanding the program, as if matches were found they would need to be

changed and the search would need to be executed again to examine if there were

still any matches.

Hashing

The decision made to rectify this problem was to execute the search using a hash

table. The new method took in the same strings as arguments that the brute force

method used. It would take the first string and enter all sequences of six characters

into a hash table. It would then check all sequences of six of the second string

against the entries in the hash table to check for matches. This proved to be much

faster, but still fairly slow when used on very large strings.

Experiments

To compare the two methods, tests were ran using identical strings of increasing

length for both methods, and including the output of total runtime. The results

proved to be very significant. They were run on lengths of 10, 100, 1,000, 10,000,

100,000, and 1,000,000. The results of our testing are shown here with time in

seconds:

 10 100 1000 10000 100000 1000000

Hashing 0 0 0 31 79 1393

Linear 0 0 16 219 21469 2149437

 Table 1: Results

Figure 1: Results

Upon reaching lengths of 1,000,000 the hashing remained just over a second in run

time, while increased by such a large amount that for the graph to display the

comparison had to have a logarithmic scale for time.

Future Work

In the future this program will be combined with other done by members of

Simpson College to change any matching sequences while not changing the melting

temperature of the DNA strand. The final program will be used to create a software

application that will generate strand to give the user specific shapes.

