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Abstract 

 
User satisfaction on web sites depends on many factors and usability is one of these 
factors. A web site should be organized in a logical manner to aid the user in 
accomplishing their goal. This paper proposes an automated method for usability testing 
of a web site using machine-learning techniques to uncover usability issues related to the 
organization of the pages (information architecture). The information architecture was 
represented as a weighted directed graph. The graph features are used to train several 
machine learning models that can then be used to predict the usability score of another 
website. Models evaluated include classifiers of support vector, random forest, decision 
tree, regression models, etc. A number of machine learning models are evaluated to 
determine the best possible model for this specific use case, using 10-fold cross 
validation on various sized datasets. We also demonstrate a way of extracting a ranked 
list of prominent features to that can be improved.  
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Introduction  
In the market today almost every company and organization has a website. It has become 
an important source of information and it is still growing at a tremendous rate. Keeping all 
that information organized and accessible to the end user is a difficult task for the web site 
owner. With the growing number of users and web sites the competition is also getting 
harsher and the web site owner will as a result have to work harder to retain users. Wu and 
Offutt [1] discussed how there appears to be no “site loyalty” for web sites which can 
make it very hard to hang on to users and when they are likely to move on to another site 
of better quality. This is one of the reasons why making sure a web site meet user 
expectations is crucial to the site owner and failure to do so can result in potential loss of 
revenue.  
Making sure the user is satisfied with the web site comes down to many factors and 
usability is one of them. If the site is perceived by the user to be unusable it will most 
likely discourage them from coming back. They arrive at the web site with a specific goal 
in mind and depending on the type of site it might be to purchase goods, gather 
information, communicate with other users, etc. The web site should be organized in a 
logical manner to aid the user in accomplishing their goal. Performing testing to uncover 
potential usability issues is therefore crucial to any web site owner. Usability testing is 
usually done in two ways (classical and the automated) [2] and will be discussed in further 
detail later. This paper proposes an automated method to evaluate the usability of a web 
site using machine-learning techniques. Harty stated that automated usability testing could 
uncover many types of issues if combinations of several techniques are used [3]. The 
proposed method is not supposed to be used as the only measure of usability of a website, 
but should be able to uncover usability issues related to the organization of the pages 
(information architecture), and can be used in combination with other types of usability 
testing techniques.  
 

Background 
Usability 
There are many ways of defining the quality of a web site and one of them focused on in 
the paper is usability.  There are also multiple definitions for usability, but Seffah, 
Donyaee, Kline and Padda attempted to consolidate this into a single model called Quality 
in Use Integrated Measurement (QUIM) which includes 10 factors: efficiency, 
effectiveness, productivity, satisfaction, learnability, safety, trustfulness, accessibility, 
universality and usefulness  [4]. The factors are further broken down into 26 criteria that 
can be measured. The method proposed in this paper will only focus on a subset of those 
10 factors: efficiency, productivity, satisfaction and learnability.  
Scholtz discusses the advantages and disadvantages of the different approaches to 
usability evaluation and the phases of usability engineering, which are requirements 
analysis, design/testing/development, and installation  [5]. The main benefit of a model 
based evaluation approach is that once the model has been defined it can be used 
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repeatedly without much extra cost, while the disadvantage to this approach is that it is 
difficult and takes time to define the model for the first time. On the other hand user-
centered evaluations are good because they involve actual users and the results can 
uncover specific aspects of a system that might cause problems for the user. On the other 
hand this is usually a very time consuming and expensive test to administer. Hwang and 
Salvendy found that 10 ± 2 is the optimal number of test users needed to discover 80% of 
usability issues [6]. Scholtz goes on to discuss how expert-based evaluation is usually less 
time-consuming and less expensive than the user-based approach, but possibly not as 
accurate as there are fewer individuals reviewing the site and they might not be in the 
same demographic as the actual users of the web site [5].  
Rukshan and Baravalle also discussed the differences between the automated and classic 
usability evaluation techniques where they show that with automated usability evaluation 
you could reach a larger number of subjects with a larger geographic demographic and 
focus on breath compared to depth [2].  
Sonderegger and Sauer showed that there are other issues with user-based usability 
evaluation where the presence of an observer in a laboratory would affect the subject and 
their emotion, performance and physiological measures  [7]. They also go into how the 
set-up of the laboratory could affect responses from subjects.  
 

Evaluating link structure 
Zhou and Chen came up with a method of evaluating the link structure of a web site using 
information about user behavior [8]. They first define a link structure model, which is 
represented as a weighted directed graph where the nodes are the individual web pages 
and the hyperlinks are the edges. Next the edge weights are calculated based on the user 
behavior that is extracted from web logs. When the edge weighted directed graph is 
created they could calculate the web site complexity using Association Degree and 
Convenience Degree of page pairs. Kung, Liu and Hsia also create a model from the link 
structure, but instead of a directed graph they create a Page Navigation Diagram, which is 
a finite state machine (FSM) [9].  
Jacko and Salvendy explored how breath and depth of a menu design influence task 
complexity [10]. They specifically did a study on the following menu structures: 22, 23, 26, 
82, 83 and 86 (XY where X is the number of choices at each level and Y is the number of 
levels). The results showed that as the menu depth increased so did the perceived 
complexity of the task. Campbell discussed 4 characteristics that describe complexity: 
multiple paths, multiple outcomes, conflicting interdependence among paths and 
uncertain/probabilistic linkages  [11].  
 

Machine Learning in usability testing 
Machine learning has been used in usability testing before and a great example of that is 
the work of Oztekin, Delen, Turkyilmaz and Zaim where they compare four different 
models (multiple linear regression, decision trees, neural networks, and support vector 
machines) and how they performed on the data collected [12]. The data was collected 
using a UseLearn checklist focusing on factors such as error prevention, visibility, 
flexibility, accessibility, etc. from the users of an online cell biology course. With 10-fold 
cross-validation they trained and analyzed the results from the different models. With the 
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data they were able to identify that the multi-layer perceptron neural network performed 
better than the others with their data. The ability to identify the important features that had 
the biggest impact on the overall usability score was also discussed.  
 

Approach 
The method proposed is very similar to the approach taken by Oztekin, Delen, Turkyilmaz 
and Zaim [12]. Instead of using data collected from a questionnaire the data used to train 
the models will be the characteristics of the navigation graph / web site graph and also 
consider different machine learning models.  
The steps of the proposed method are as follows: 

1. A simple breath-first search technique to traverse and crawl a web site. 
2. Create a directed graph from the data gathered by the crawler 
3. Get characteristics of the graph structure 
4. Train machine learning models 
5. Determine the best model to be used 
6. Rank the features to determine which aspects of the web site graph has the 

biggest impact on overall usability 
7. Apply new data to the trained models to predict the usability of new web sites 
 

Web crawler 
Web sites are made up pages using a multitude of technologies/languages such as HTML 
(Hypertext Markup Language) for structuring the document, CSS (Cascading Style 
Sheets) for the look and feel and some times JavaScript for frontend logic. A backend 
programming/scripting language is commonly used for dynamic content generation. This 
paper will focus mostly on small to medium web sites with relatively static content that 
does not rely heavily on frontend technologies such as JavaScript. How the pages are liked 
together and organized can be referred to as the web site graph or information architecture 
and is what will be used to determine the level of usability of a the web site. The ability to 
crawl the entire web site depends on a number of factors like forms (where the input given 
might lead to different pages), client-side validation and server-side manipulation as 
discussed by Marchetto,Tiella, Tonella, Alshahwan and Harman [13]. 
The simple crawler that was created receives a domain (e.g. http://python.org) to keep the 
crawling contained within the domain and a start URL (e.g. http://python.org/about/) to 
indicate where to start the crawling. It is preferred to crawl the entire web site, but in very 
large sites this can be very time consuming. In a web site graph with N number of nodes 
where every page is linking to every other page and to itself there will be N2 number of 
edges.  
There has been work done by Liu, Janssen and Milios on creating smarter crawler based 
on using user data and Hidden Markov Models (HMM) to crawl the most relevant pages 
first [14], but since we need the entire web site graph it doesn’t matter what order they are 
crawled as long as all pages are reached. A simple Breadth-First Search approach was 
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taken for simplicity. Time to crawl the entire website will depend on bandwidth and 
number of pages and hyperlinks. The results are stored in a database to allow the next 
steps to work with the data without having to wait for the crawler to run on the web site 
every time.  
 

Graph generation 
The graph is then created from the data gathered during crawling with first adding all the 
pages as nodes N. After all the pages are added to the graph, edges E can be added to 
represent the link from node i to node j. An example representation of a graph created 
using this technique in Figure 1. Using a similar technique as described by Zhou and Chen  
[8] weights could be added to the edges for further analysis, but that is outside of the scope 
of this paper.   

 
Figure. 1. Example graph created by the algorithm. 

 
The directed graph is defined as follows:  

𝐺 = (𝑁,𝐸) 
 

𝑁 = 𝑁!: 𝑖 ∈ {1,𝑛}  
 

𝐸 = {𝐸!,!: 𝑖, 𝑗 ∈ {1,𝑛}} 

 
From this web site graph the data used by the machine learning models will be extracted. 
The five features used in this method area as follows, but could be expanded in future 
studies:  

1. Number of nodes (pages) 
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2. Number of edges (unique links between pages) 
3. Average out degree  
4. Average in degree 
5. Graph radius (the minimum eccentricity of the graph) 

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 = 𝑁  
 

𝑛𝑢𝑚𝐸𝑑𝑔𝑒𝑠 = 𝐸  
 

𝑎𝑣𝑔𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒 =
1
𝑁 outDegree(𝑛)

!∈!

 

 

𝑎𝑣𝑔𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒 =
1
𝑁 inDegree(𝑛)

!∈!

 

 

Training data generation  
 The machine learning models require training data to be able to make predictions. To be 
able to experiment with different training data set size a program was created to generate 
semi-random data. The program would take as input the filename where the data should be 
saved and the number of lines to generate. The following features were favored in order to 
force certain features to matter more in order to create more realistic user data: 
graphRadius, numNodes, avgOutDegree and  avgInDegree. Example lines from the CSV 
(comma separated value) training data file in Table 1 where the first column corresponds 
to 1 = good usability, 0 = bad usability and the rest of the columns corresponds to the list 
of 5 features provided earlier.  
 
 
 

Table. 1.  Example training data file 
 

Machine learning models 
The machine learning models compared are a subset of models provided by the Python 
machine learning library called scikit-learn [15]. The following classifiers and regression 
models are compared (named like they are in the scikit-learn library): LinearSVC, SVR, 
SVC, GaussianNB, RandomForestClassifier, GradientBoostingClassifier, 
DecisionTreeClassifier, KNeighborsClassifier, ElasticNet, LinearRegression, LassoLars, 
BayesianRidge, PassiveAggressiveRegressor, PassiveAggressiveClassifier. 
A wide variety of models were chosen to compare their performance under different 
circumstances with the data generated in the previous step. All of the models have 

1 545 283803 20 65 2 
0 167 9863 92 50 4 
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revealed different strengths and weaknesses in the results. Some require larger data sets to 
adequately train, while others can perform reasonably well with the smaller data set.   

Evaluating the models 
To determine the best machine learning model for evaluating the usability of a website, we 
need a numerical scheme that evaluates each model with a numeric score. The evaluation 
of the models was done using k-Fold cross-validation. Kohavi explains that k-Fold Cross-
validation is a technique where the dataset is divided up into k mutually exclusive sets 
which is used to train and test the model’s accuracy [16]. It will take one of the newly 
created sub sets and train the model and then take another sub set to validate the results. 
Kohavi also showed in his study that a good value k-Fold cross-validation would be k=10. 
10-fold cross validation was used in this experiment and produced good results with the 
different data set sizes.  
Each prediction by the model has to be scored and a popular scoring function is log loss, 
which has been used by many including Roy and McCallum [17] in their work on optimal 
active learning through Monte Carlo Estimation of Error Reduction. Log loss is a function 
where X is the actual values and Y is the predicted values:  

𝑙𝑜𝑔𝑙𝑜𝑠𝑠(𝑋,𝑌) = −
1
𝑋 𝑋!    log𝑌! + 1− 𝑋!   log(1− 𝑌!)

!

!!!

 

𝐸𝑣𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 =
1
𝑁 𝑙𝑜𝑔𝑙𝑜𝑠𝑠 𝑚𝑜𝑑𝑒𝑙! .𝑎𝑐𝑡𝑢𝑎𝑙,𝑚𝑜𝑑𝑒𝑙! .𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

!

!!!

       

𝑤ℎ𝑒𝑟𝑒  𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑠𝑒𝑡𝑠 
The overall score for the model was computed by taking the mean log loss for each of the 
cross validation sets.  This procedure was repeated with test data sets of size 50, 100, 500, 
1000, 2000 and 5000, respectively, to evaluate the performance and results from the 
different models. Some of the models might work better with a large amount of data, 
while other can make about the same prediction with a smaller data set. It would be 
preferred to identify a model that performs adequately with a small data set, as this would 
reduce the amount of data gathering needed for a final implementation of this method. 
Getting 5000 users to rate websites will be very time consuming, but 50-100 is attainable 
in relatively short time.  

Important features 
For convenience the Random Forest Classifier in the Scikit learn machine learning library 
[15] was used to extract the important features from the model. After training the model 
the features can be extracted and sorted by importance to give a list of the features that has 
the biggest impact on the end result. Standard deviation is also calculated and displayed as 
a blue line on a graph giving a good overview of which features are important. In this 
example you can see that features 4 and 3 are very important and feature 2 only has about 
6% importance. This shows that the model was able to determine the important features 
from the dataset described earlier.  
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Figure. 2. Example of a graph showing the important features 

This is very valuable information for a web site owner looking to improve the usability of 
a web site as they can focus their work on the most important features that will give a 
better usability score and as a result give the users a better experience. Work improving 
feature 2 would not be recommended, as it will not have a great impact on the end result 
significantly and as making changes might be very time consuming and expensive it is up 
to the web site owner to decide if it is worth the small improvement in the overall 
usability.  

Results 
 The crawler was tested on a small web site running locally on the machine as well as a 
similar web site not running locally. It would identify all the links from every page 
crawled and store the structure to a database for use in the web site graph generation. It 
also reduced the amount of information stored by only considering unique links and 
adding up duplicates and storing that in the database as well.  
A custom directed graph class was written in python and it could populate the nodes and 
edges using the information from the database. As performance has not been optimized 
with this class it tends to run slower than originally expected. It would be preferred to 
move this codebase over to a third party library that has been optimized for performance.  
Training data sets were created with different sizes to evaluate the impact this would have 
on the models ability to predict the correct answer. Results shown in Table 2, Figure 2 and 
Figure 3. With a dataset fewer than 500 the results showed that 11 out of the 14 models 
performed rather poorly, but 3 performed reasonably well (BayesianRidge, LassoLars and 
Linear Regression). As the data set reached 500, most of the models started getting closer 
and at 5000 most of the models performed at a reasonable level. The 3 models that had the 
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worst performance with both small and large data sets were PassiveAgressiveClassifier, 
PassiveAgressiveRegressor and LinearSVC. It would not be recommended to use these as 
they require large data sets. It is however interesting to see that LinearSVC performed so 
badly while another model in the same family, SVR, performed really well even with 
small data sets. The most consistent model was LinearRegression with a standard 
deviation of 0.02826 and performed best with data sets 50 and 100. This would be the 
preferred model when the size of data sets is low, but it also performed very well with a 
larger data set.  
The identification of important features using a Random Forest Classifier was also 
successful and could be used to suggest to a site owner which aspects of the information 
architecture to improve first. Just simply giving a score of good/bad for the web site as a 
whole is not as useful as pointing to specific issues that can be fixed to improve overall 
usability.   

 
Figure. 3. Scoring of all models. (Dataset size: 50,100,500,1000,2000,5000) 

 
Figure. 4. Scoring of all models. (Dataset size: 1000,2000,5000) 

 

Table. 2. Scoring of models 
 

 50 100 500 1000 2000 5000 STD AVG 

LinearSVC 4.00652 1.24341 0.32190 0.15750 0.08669 0.03068 1.41644 0.97445 

SVR 0.11036 0.05480 0.01222 0.00616 0.00310 0.00124 0.03979 0.03131 

SVC 1.51974 0.75987 0.20309 0.10396 0.05319 0.02135 0.54191 0.44353 
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GaussianNB 0.69079 0.79441 0.13678 0.06908 0.03385 0.01256 0.32402 0.28958 

RandomForestClassifier 0.69079 0.82894 0.02211 0.00967 0.00397 0.00122 0.35615 0.25945 

GradientBoostingClassifier 0.96710 0.44901 0.01658 0.00587 0.00345 0.00108 0.36289 0.24052 

DecisionTreeClassifier 1.51972 0.41447 0.03316 0.01485 0.00708 0.00254 0.55098 0.33197 

KNeighborsClassifier 2.07236 0.93256 0.25559 0.12849 0.06476 0.02604 0.73404 0.57997 

ElasticNet 0.20171 0.05256 0.01160 0.00598 0.00264 0.00116 0.07184 0.04594 

LinearRegression 0.07836 0.04749 0.01588 0.00725 0.00310 0.00128 0.02826 0.02556 

LassoLars 0.11037 0.05461 0.01215 0.00612 0.00309 0.00124 0.03978 0.03126 

BayesianRidge 0.20121 0.05291 0.01593 0.00726 0.00303 0.00128 0.07116 0.04694 

PassiveAggressiveRegressor 1.53266 2.14925 0.41029 0.17364 0.04713 0.02098 0.82046 0.72233 

PassiveAggressiveClassifier 1.51974 2.69403 0.41447 0.19825 0.05742 0.02190 0.98074 0.81764 

Max 4.00652 2.69403 0.41447 0.19825 0.08669 0.03068 1.41644 0.97445 

Min 0.07836 0.04749 0.01160 0.00587 0.00264 0.00108 0.02826 0.02556 

 
 

Conclusion 
An automated usability testing method is proposed and different machine learning models 
evaluated and compared. The comparison successfully identified good (and bad) models 
for use in situations with smaller and larger data sets. The result may vary when real world 
data is used, but the 10-fold cross-validation technique was still successful in evaluating 
the different models used.  
The method also demonstrated a way to extract the important features the Random Forest 
Tree Classifier used and give the web site owner a ranked list of which features to focus 
on when trying to improve the usability.  
 

Future Work 
There is still much to work that could be done with giving useful feedback to the web site 
owner. The first thing would be to expand the number of features extracted from the web 
site graph to be used by the models to provide more accurate results.   
Different features might be important in different web site categories like an online 
bookstore compared to a personal blog. It would be interesting to see if different 
categories favored the same features. Training the models with data for a specified 
category and comparing the results from the other categories would be able to uncover any 
differences. 
At the current state of the implementation the data sets used to train the models are 
randomly generated, but in the future it would be interesting to use actual user data. It 
would not be particularly hard to gather this data as all that is needed is the web site graph, 
which is automatically generated by the crawler, and ask the user how they would rate the 
web site (good or bad usability). This process could even be done remotely without 
bringing subjects into a usability-testing laboratory.  
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