

Evaluation and implementation of machine learning
techniques in usability testing for web sites

Christoffer Korvald, Eunjin Kim, Hassan Reza
Computer Science Department

University of North Dakota
Grand Forks, ND, 58202-9015, U.S.A.

christoffer.korvald@my.und.edu, ejkim@cs.und.edu, reza@cs.und.edu

Abstract

User satisfaction on web sites depends on many factors and usability is one of these
factors. A web site should be organized in a logical manner to aid the user in
accomplishing their goal. This paper proposes an automated method for usability testing
of a web site using machine-learning techniques to uncover usability issues related to the
organization of the pages (information architecture). The information architecture was
represented as a weighted directed graph. The graph features are used to train several
machine learning models that can then be used to predict the usability score of another
website. Models evaluated include classifiers of support vector, random forest, decision
tree, regression models, etc. A number of machine learning models are evaluated to
determine the best possible model for this specific use case, using 10-fold cross
validation on various sized datasets. We also demonstrate a way of extracting a ranked
list of prominent features to that can be improved.

1

Introduction
In the market today almost every company and organization has a website. It has become
an important source of information and it is still growing at a tremendous rate. Keeping all
that information organized and accessible to the end user is a difficult task for the web site
owner. With the growing number of users and web sites the competition is also getting
harsher and the web site owner will as a result have to work harder to retain users. Wu and
Offutt [1] discussed how there appears to be no “site loyalty” for web sites which can
make it very hard to hang on to users and when they are likely to move on to another site
of better quality. This is one of the reasons why making sure a web site meet user
expectations is crucial to the site owner and failure to do so can result in potential loss of
revenue.
Making sure the user is satisfied with the web site comes down to many factors and
usability is one of them. If the site is perceived by the user to be unusable it will most
likely discourage them from coming back. They arrive at the web site with a specific goal
in mind and depending on the type of site it might be to purchase goods, gather
information, communicate with other users, etc. The web site should be organized in a
logical manner to aid the user in accomplishing their goal. Performing testing to uncover
potential usability issues is therefore crucial to any web site owner. Usability testing is
usually done in two ways (classical and the automated) [2] and will be discussed in further
detail later. This paper proposes an automated method to evaluate the usability of a web
site using machine-learning techniques. Harty stated that automated usability testing could
uncover many types of issues if combinations of several techniques are used [3]. The
proposed method is not supposed to be used as the only measure of usability of a website,
but should be able to uncover usability issues related to the organization of the pages
(information architecture), and can be used in combination with other types of usability
testing techniques.

Background
Usability
There are many ways of defining the quality of a web site and one of them focused on in
the paper is usability. There are also multiple definitions for usability, but Seffah,
Donyaee, Kline and Padda attempted to consolidate this into a single model called Quality
in Use Integrated Measurement (QUIM) which includes 10 factors: efficiency,
effectiveness, productivity, satisfaction, learnability, safety, trustfulness, accessibility,
universality and usefulness [4]. The factors are further broken down into 26 criteria that
can be measured. The method proposed in this paper will only focus on a subset of those
10 factors: efficiency, productivity, satisfaction and learnability.
Scholtz discusses the advantages and disadvantages of the different approaches to
usability evaluation and the phases of usability engineering, which are requirements
analysis, design/testing/development, and installation [5]. The main benefit of a model
based evaluation approach is that once the model has been defined it can be used

2

repeatedly without much extra cost, while the disadvantage to this approach is that it is
difficult and takes time to define the model for the first time. On the other hand user-
centered evaluations are good because they involve actual users and the results can
uncover specific aspects of a system that might cause problems for the user. On the other
hand this is usually a very time consuming and expensive test to administer. Hwang and
Salvendy found that 10 ± 2 is the optimal number of test users needed to discover 80% of
usability issues [6]. Scholtz goes on to discuss how expert-based evaluation is usually less
time-consuming and less expensive than the user-based approach, but possibly not as
accurate as there are fewer individuals reviewing the site and they might not be in the
same demographic as the actual users of the web site [5].
Rukshan and Baravalle also discussed the differences between the automated and classic
usability evaluation techniques where they show that with automated usability evaluation
you could reach a larger number of subjects with a larger geographic demographic and
focus on breath compared to depth [2].
Sonderegger and Sauer showed that there are other issues with user-based usability
evaluation where the presence of an observer in a laboratory would affect the subject and
their emotion, performance and physiological measures [7]. They also go into how the
set-up of the laboratory could affect responses from subjects.

Evaluating link structure
Zhou and Chen came up with a method of evaluating the link structure of a web site using
information about user behavior [8]. They first define a link structure model, which is
represented as a weighted directed graph where the nodes are the individual web pages
and the hyperlinks are the edges. Next the edge weights are calculated based on the user
behavior that is extracted from web logs. When the edge weighted directed graph is
created they could calculate the web site complexity using Association Degree and
Convenience Degree of page pairs. Kung, Liu and Hsia also create a model from the link
structure, but instead of a directed graph they create a Page Navigation Diagram, which is
a finite state machine (FSM) [9].
Jacko and Salvendy explored how breath and depth of a menu design influence task
complexity [10]. They specifically did a study on the following menu structures: 22, 23, 26,
82, 83 and 86 (XY where X is the number of choices at each level and Y is the number of
levels). The results showed that as the menu depth increased so did the perceived
complexity of the task. Campbell discussed 4 characteristics that describe complexity:
multiple paths, multiple outcomes, conflicting interdependence among paths and
uncertain/probabilistic linkages [11].

Machine Learning in usability testing
Machine learning has been used in usability testing before and a great example of that is
the work of Oztekin, Delen, Turkyilmaz and Zaim where they compare four different
models (multiple linear regression, decision trees, neural networks, and support vector
machines) and how they performed on the data collected [12]. The data was collected
using a UseLearn checklist focusing on factors such as error prevention, visibility,
flexibility, accessibility, etc. from the users of an online cell biology course. With 10-fold
cross-validation they trained and analyzed the results from the different models. With the

3

data they were able to identify that the multi-layer perceptron neural network performed
better than the others with their data. The ability to identify the important features that had
the biggest impact on the overall usability score was also discussed.

Approach
The method proposed is very similar to the approach taken by Oztekin, Delen, Turkyilmaz
and Zaim [12]. Instead of using data collected from a questionnaire the data used to train
the models will be the characteristics of the navigation graph / web site graph and also
consider different machine learning models.
The steps of the proposed method are as follows:

1. A simple breath-first search technique to traverse and crawl a web site.
2. Create a directed graph from the data gathered by the crawler
3. Get characteristics of the graph structure
4. Train machine learning models
5. Determine the best model to be used
6. Rank the features to determine which aspects of the web site graph has the

biggest impact on overall usability
7. Apply new data to the trained models to predict the usability of new web sites

Web crawler
Web sites are made up pages using a multitude of technologies/languages such as HTML
(Hypertext Markup Language) for structuring the document, CSS (Cascading Style
Sheets) for the look and feel and some times JavaScript for frontend logic. A backend
programming/scripting language is commonly used for dynamic content generation. This
paper will focus mostly on small to medium web sites with relatively static content that
does not rely heavily on frontend technologies such as JavaScript. How the pages are liked
together and organized can be referred to as the web site graph or information architecture
and is what will be used to determine the level of usability of a the web site. The ability to
crawl the entire web site depends on a number of factors like forms (where the input given
might lead to different pages), client-side validation and server-side manipulation as
discussed by Marchetto,Tiella, Tonella, Alshahwan and Harman [13].
The simple crawler that was created receives a domain (e.g. http://python.org) to keep the
crawling contained within the domain and a start URL (e.g. http://python.org/about/) to
indicate where to start the crawling. It is preferred to crawl the entire web site, but in very
large sites this can be very time consuming. In a web site graph with N number of nodes
where every page is linking to every other page and to itself there will be N2 number of
edges.
There has been work done by Liu, Janssen and Milios on creating smarter crawler based
on using user data and Hidden Markov Models (HMM) to crawl the most relevant pages
first [14], but since we need the entire web site graph it doesn’t matter what order they are
crawled as long as all pages are reached. A simple Breadth-First Search approach was

4

taken for simplicity. Time to crawl the entire website will depend on bandwidth and
number of pages and hyperlinks. The results are stored in a database to allow the next
steps to work with the data without having to wait for the crawler to run on the web site
every time.

Graph generation
The graph is then created from the data gathered during crawling with first adding all the
pages as nodes N. After all the pages are added to the graph, edges E can be added to
represent the link from node i to node j. An example representation of a graph created
using this technique in Figure 1. Using a similar technique as described by Zhou and Chen
[8] weights could be added to the edges for further analysis, but that is outside of the scope
of this paper.

Figure. 1. Example graph created by the algorithm.

The directed graph is defined as follows:

𝐺 = (𝑁,𝐸)

𝑁 = 𝑁!: 𝑖 ∈ {1,𝑛}

𝐸 = {𝐸!,!: 𝑖, 𝑗 ∈ {1,𝑛}}

From this web site graph the data used by the machine learning models will be extracted.
The five features used in this method area as follows, but could be expanded in future
studies:

1. Number of nodes (pages)

5

2. Number of edges (unique links between pages)
3. Average out degree
4. Average in degree
5. Graph radius (the minimum eccentricity of the graph)

𝑛𝑢𝑚𝑁𝑜𝑑𝑒𝑠 = 𝑁

𝑛𝑢𝑚𝐸𝑑𝑔𝑒𝑠 = 𝐸

𝑎𝑣𝑔𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒 =
1
𝑁 outDegree(𝑛)

!∈!

𝑎𝑣𝑔𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒 =
1
𝑁 inDegree(𝑛)

!∈!

Training data generation
 The machine learning models require training data to be able to make predictions. To be
able to experiment with different training data set size a program was created to generate
semi-random data. The program would take as input the filename where the data should be
saved and the number of lines to generate. The following features were favored in order to
force certain features to matter more in order to create more realistic user data:
graphRadius, numNodes, avgOutDegree and avgInDegree. Example lines from the CSV
(comma separated value) training data file in Table 1 where the first column corresponds
to 1 = good usability, 0 = bad usability and the rest of the columns corresponds to the list
of 5 features provided earlier.

Table. 1. Example training data file

Machine learning models
The machine learning models compared are a subset of models provided by the Python
machine learning library called scikit-learn [15]. The following classifiers and regression
models are compared (named like they are in the scikit-learn library): LinearSVC, SVR,
SVC, GaussianNB, RandomForestClassifier, GradientBoostingClassifier,
DecisionTreeClassifier, KNeighborsClassifier, ElasticNet, LinearRegression, LassoLars,
BayesianRidge, PassiveAggressiveRegressor, PassiveAggressiveClassifier.
A wide variety of models were chosen to compare their performance under different
circumstances with the data generated in the previous step. All of the models have

1 545 283803 20 65 2
0 167 9863 92 50 4

6

revealed different strengths and weaknesses in the results. Some require larger data sets to
adequately train, while others can perform reasonably well with the smaller data set.

Evaluating the models
To determine the best machine learning model for evaluating the usability of a website, we
need a numerical scheme that evaluates each model with a numeric score. The evaluation
of the models was done using k-Fold cross-validation. Kohavi explains that k-Fold Cross-
validation is a technique where the dataset is divided up into k mutually exclusive sets
which is used to train and test the model’s accuracy [16]. It will take one of the newly
created sub sets and train the model and then take another sub set to validate the results.
Kohavi also showed in his study that a good value k-Fold cross-validation would be k=10.
10-fold cross validation was used in this experiment and produced good results with the
different data set sizes.
Each prediction by the model has to be scored and a popular scoring function is log loss,
which has been used by many including Roy and McCallum [17] in their work on optimal
active learning through Monte Carlo Estimation of Error Reduction. Log loss is a function
where X is the actual values and Y is the predicted values:

𝑙𝑜𝑔𝑙𝑜𝑠𝑠(𝑋,𝑌) = −
1
𝑋 𝑋! log𝑌! + 1− 𝑋! log(1− 𝑌!)

!

!!!

𝐸𝑣𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 =
1
𝑁 𝑙𝑜𝑔𝑙𝑜𝑠𝑠 𝑚𝑜𝑑𝑒𝑙! .𝑎𝑐𝑡𝑢𝑎𝑙,𝑚𝑜𝑑𝑒𝑙! .𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

!

!!!

𝑤ℎ𝑒𝑟𝑒 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑡𝑠
The overall score for the model was computed by taking the mean log loss for each of the
cross validation sets. This procedure was repeated with test data sets of size 50, 100, 500,
1000, 2000 and 5000, respectively, to evaluate the performance and results from the
different models. Some of the models might work better with a large amount of data,
while other can make about the same prediction with a smaller data set. It would be
preferred to identify a model that performs adequately with a small data set, as this would
reduce the amount of data gathering needed for a final implementation of this method.
Getting 5000 users to rate websites will be very time consuming, but 50-100 is attainable
in relatively short time.

Important features
For convenience the Random Forest Classifier in the Scikit learn machine learning library
[15] was used to extract the important features from the model. After training the model
the features can be extracted and sorted by importance to give a list of the features that has
the biggest impact on the end result. Standard deviation is also calculated and displayed as
a blue line on a graph giving a good overview of which features are important. In this
example you can see that features 4 and 3 are very important and feature 2 only has about
6% importance. This shows that the model was able to determine the important features
from the dataset described earlier.

7

Figure. 2. Example of a graph showing the important features

This is very valuable information for a web site owner looking to improve the usability of
a web site as they can focus their work on the most important features that will give a
better usability score and as a result give the users a better experience. Work improving
feature 2 would not be recommended, as it will not have a great impact on the end result
significantly and as making changes might be very time consuming and expensive it is up
to the web site owner to decide if it is worth the small improvement in the overall
usability.

Results
 The crawler was tested on a small web site running locally on the machine as well as a
similar web site not running locally. It would identify all the links from every page
crawled and store the structure to a database for use in the web site graph generation. It
also reduced the amount of information stored by only considering unique links and
adding up duplicates and storing that in the database as well.
A custom directed graph class was written in python and it could populate the nodes and
edges using the information from the database. As performance has not been optimized
with this class it tends to run slower than originally expected. It would be preferred to
move this codebase over to a third party library that has been optimized for performance.
Training data sets were created with different sizes to evaluate the impact this would have
on the models ability to predict the correct answer. Results shown in Table 2, Figure 2 and
Figure 3. With a dataset fewer than 500 the results showed that 11 out of the 14 models
performed rather poorly, but 3 performed reasonably well (BayesianRidge, LassoLars and
Linear Regression). As the data set reached 500, most of the models started getting closer
and at 5000 most of the models performed at a reasonable level. The 3 models that had the

8

worst performance with both small and large data sets were PassiveAgressiveClassifier,
PassiveAgressiveRegressor and LinearSVC. It would not be recommended to use these as
they require large data sets. It is however interesting to see that LinearSVC performed so
badly while another model in the same family, SVR, performed really well even with
small data sets. The most consistent model was LinearRegression with a standard
deviation of 0.02826 and performed best with data sets 50 and 100. This would be the
preferred model when the size of data sets is low, but it also performed very well with a
larger data set.
The identification of important features using a Random Forest Classifier was also
successful and could be used to suggest to a site owner which aspects of the information
architecture to improve first. Just simply giving a score of good/bad for the web site as a
whole is not as useful as pointing to specific issues that can be fixed to improve overall
usability.

Figure. 3. Scoring of all models. (Dataset size: 50,100,500,1000,2000,5000)

Figure. 4. Scoring of all models. (Dataset size: 1000,2000,5000)

Table. 2. Scoring of models

 50 100 500 1000 2000 5000 STD AVG

LinearSVC 4.00652 1.24341 0.32190 0.15750 0.08669 0.03068 1.41644 0.97445

SVR 0.11036 0.05480 0.01222 0.00616 0.00310 0.00124 0.03979 0.03131

SVC 1.51974 0.75987 0.20309 0.10396 0.05319 0.02135 0.54191 0.44353

9

GaussianNB 0.69079 0.79441 0.13678 0.06908 0.03385 0.01256 0.32402 0.28958

RandomForestClassifier 0.69079 0.82894 0.02211 0.00967 0.00397 0.00122 0.35615 0.25945

GradientBoostingClassifier 0.96710 0.44901 0.01658 0.00587 0.00345 0.00108 0.36289 0.24052

DecisionTreeClassifier 1.51972 0.41447 0.03316 0.01485 0.00708 0.00254 0.55098 0.33197

KNeighborsClassifier 2.07236 0.93256 0.25559 0.12849 0.06476 0.02604 0.73404 0.57997

ElasticNet 0.20171 0.05256 0.01160 0.00598 0.00264 0.00116 0.07184 0.04594

LinearRegression 0.07836 0.04749 0.01588 0.00725 0.00310 0.00128 0.02826 0.02556

LassoLars 0.11037 0.05461 0.01215 0.00612 0.00309 0.00124 0.03978 0.03126

BayesianRidge 0.20121 0.05291 0.01593 0.00726 0.00303 0.00128 0.07116 0.04694

PassiveAggressiveRegressor 1.53266 2.14925 0.41029 0.17364 0.04713 0.02098 0.82046 0.72233

PassiveAggressiveClassifier 1.51974 2.69403 0.41447 0.19825 0.05742 0.02190 0.98074 0.81764

Max 4.00652 2.69403 0.41447 0.19825 0.08669 0.03068 1.41644 0.97445

Min 0.07836 0.04749 0.01160 0.00587 0.00264 0.00108 0.02826 0.02556

Conclusion
An automated usability testing method is proposed and different machine learning models
evaluated and compared. The comparison successfully identified good (and bad) models
for use in situations with smaller and larger data sets. The result may vary when real world
data is used, but the 10-fold cross-validation technique was still successful in evaluating
the different models used.
The method also demonstrated a way to extract the important features the Random Forest
Tree Classifier used and give the web site owner a ranked list of which features to focus
on when trying to improve the usability.

Future Work
There is still much to work that could be done with giving useful feedback to the web site
owner. The first thing would be to expand the number of features extracted from the web
site graph to be used by the models to provide more accurate results.
Different features might be important in different web site categories like an online
bookstore compared to a personal blog. It would be interesting to see if different
categories favored the same features. Training the models with data for a specified
category and comparing the results from the other categories would be able to uncover any
differences.
At the current state of the implementation the data sets used to train the models are
randomly generated, but in the future it would be interesting to use actual user data. It
would not be particularly hard to gather this data as all that is needed is the web site graph,
which is automatically generated by the crawler, and ask the user how they would rate the
web site (good or bad usability). This process could even be done remotely without
bringing subjects into a usability-testing laboratory.

10

Acknowledgements
Thank you to Kyle Goehner who worked with me on the initial project that this research
got its inspiration from.

References

[1] Y. Wu and J. Offutt. Modeling and testing web-based applications. GMU ISE Technical ISE-TR-02-08
2002.

[2] A. Rukshan and A. Baravalle. Automated usability testing: Analysing asia web sites. arXiv Preprint
arXiv:1212.1849 2012.

[3] J. Harty. Finding usability bugs with automated tests. Commun ACM 54(2), pp. 44-49. 2011.

[4] A. Seffah, M. Donyaee, R. B. Kline and H. K. Padda. Usability measurement and metrics: A
consolidated model. Software Quality Journal 14(2), pp. 159-178. 2006.

[5] J. Scholtz. Usability evaluation. National Institute of Standards and Technology 2004.

[6] W. Hwang and G. Salvendy. Number of people required for usability evaluation: The 10±2 rule.
Commun ACM 53(5), pp. 130-133. 2010.

[7] A. Sonderegger and J. Sauer. The influence of laboratory set-up in usability tests: Effects on user
performance, subjective ratings and physiological measures. Ergonomics 52(11), pp. 1350-1361.
2009.

[8] B. Zhou and J. Chen. User behavior based website link structure evaluation and improvement.
Presented at ICWI. 2002, Available: http://dblp.uni-trier.de/db/conf/iadis/icwi2002.html#ZhouC02.

[9] D. C. Kung, C. Liu and P. Hsia. An object-oriented web test model for testing web applications.
Presented at Quality Software, 2000. Proceedings. First Asia-Pacific Conference On. 2000, .

[10] J. A. JACKO and G. SALVENDY. Hierarchical menu design: Breadth, depth, and task complexity.
Percept. Mot. Skills 82(3c), pp. 1187-1201. 1996.

[11] D. J. Campbell. Task complexity: A review and analysis. Academy of Management Review 13(1), pp.
40-52. 1988.

[12] A. Oztekin, D. Delen, A. Turkyilmaz and S. Zaim. A machine learning-based usability evaluation
method for eLearning systems. Decis. Support Syst. 2013.

[13] A. Marchetto, R. Tiella, P. Tonella, N. Alshahwan and M. Harman. Crawlability metrics for automated
web testing. International Journal on Software Tools for Technology Transfer 13(2), pp. 131-149.
2011.

[14] H. Liu, J. Janssen and E. Milios. Using HMM to learn user browsing patterns for focused web
crawling. Data Knowl. Eng. 59(2), pp. 270-291. 2006.

11

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss and V. Dubourg. Scikit-learn: Machine learning in python. The Journal of
Machine Learning Research 12pp. 2825-2830. 2011.

[16] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection.
Presented at IJCAI. 1995, .

[17] N. Roy and A. McCallum. Toward optimal active learning through monte carlo estimation of error
reduction. ICML, Williamstown 2001.

