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Abstract 

Understanding the evolutionary relationships between organisms by comparing their 

genomic sequences is a focus of modern-day computational biology research. 

Estimating evolutionary history in this way has many applications, particularly in 

analyzing the progression of infectious, viral diseases. Phylogenetic reconstruction 

algorithms model evolutionary history using tree-like structures that describe the 

estimated ancestry of a given set of species. Many methods exist to infer 

phylogenies from genes, but no one technique is definitively better for all types of 

sequences and organisms. Here, we implement and analyze several popular tree 

reconstruction methods and compare their effectiveness on both synthetic and real 

genomic sequences. Our synthetic data set aims to simulate a variety of research 

conditions, and includes inputs that vary in number of species. For our case-study, 

we use the genes of 53 apes and compare our reconstructions against the 

well-studied evolutionary history of primates. Though our implementations often 

represent the simplest manifestations of these complex methods, our results are 

suggestive of fundamental advantages and disadvantages that underlie each of these 

techniques. 
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Introduction 

A phylogenetic tree is a tree structure that represents evolutionary relationship 

among both extant and extinct species [1]. Each node in a tree represents a different 

species, and internal nodes in a tree represent most common ancestors of their direct 

child nodes. The length of a branch in a phylogenetic tree is an indication of 

evolutionary distance. Depending on the particular reconstruction method used, 

branch length usually indicates either the estimated time it took for one species to 

evolve into another species, or the genetic distance between a pair of ancestor and 

its descendant. We are particularly interested in bifurcating phylogenetic trees, 

meaning an ancestor can only have two direct descendants. Phylogenetic trees are 

useful not only for describing the evolutionary history of multiple species but also 

for solving other real world problems. For instance, phylogenetic analysis of a virus 

can sometime help us track down the source of infectious, viral diseases such as 

SARS [16]. Phylogenetic trees are also used to find natural sources of new drugs or 

to develop effective treatments against diseases that are hard to cure [19]. 

Reconstruction also allows us to make predictions about poorly understood or 

extinct species. All these applications are dependent on our ability to reconstruct 

phylogenetic trees from information available to us.  

Project Goals 

Phylogenetic reconstruction normally consists of two sequential phases. The first 

phase is aligning multiple DNA sequences to uniform length, since most of the 

actual reconstruction algorithms assume that input DNA sequences are already 

aligned. The second phase is to conduct reconstruction of a phylogenetic tree, taking 

the multiple sequence alignment as an input. The goal of our project is to review 

several popular multiple sequence alignment (MSA) algorithms and phylogenetic 

reconstruction methods. We implement, apply, and compare their performance on 

both real and synthetic DNA data.  

After conducting a literature review and determining which types of algorithms 

were most frequently utilized, we decided to implement three MSA algorithms 

(Table 1) and six phylogenetic reconstruction algorithms (Table 2a, 2b). In total, we 

have 18 possible phylogenetic reconstruction methods, given our three sequence 

aligners and our six tree reconstructors. Because these algorithms are so commonly 

applied, state-of-the-art implementations for each exist. We acknowledge our 

programs lack the nuance and optimizations found in these refined versions. 

However, we argue that results derived from our implementations reflect basic 

advantages and disadvantages that underlie each method. 
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 Description Merits and Critiques 

C
lu

st
a
l-

W
 (

C
W

) 
This algorithm first creates “a guide 

tree” using a distance matrix of all 

possible pairwise alignments of 

sequences. Then, it progressively 

aligns larger groups of sequences by 

following the branching order in the 

guide tree. After the entire tree has 

been “collapsed'' up from tips to root, 

we are left with a set of n aligned 

sequences, each with the same total 

length. [4][27] 

The main advantages of the 

progressive strategy used by 

ClustalW are its speed and relative 

robustness. ClustalW also requires 

much less memory than other 

programs. However, CW suffers 

from its greediness, as errors made 

in initial alignments cannot be 

corrected later when the 

progressively more sequences are 

merged together. [4][27] 

M
u

sc
le

 (
M

S
C

) 

MSC has three main phases, Draft, 

Improvement, and Refinement. The 

first two steps mirror CW heavily 

with a few substituted distance 

evaluation metrics for speed 

improvements. However, the 

refinement focuses on using guide 

trees to explore neighboring solutions 

by cutting the tree in two and 

realigning repeatedly. [3][4][5] 

MUSCLE is best for a larger number 

of species with short length 

sequences. The refinement period 

improves upon the weak exploration 

of CW, which leads to more accurate 

alignments. However, the refinement 

phase is highly expensive to run, 

with little guarantee of dramatic 

improvement. [4] 

C
en

te
r 

st
a
r 

(C
S

) 

CS first finds the “center sequence” 

by computing the hamming distance 

between every sequence pairs and 

finding the sequence, which 

minimizes the total distance between 

itself and all other sequences. Then, it 

pairwise aligns every sequence to the 

center sequence. Finally, it produces 

MSA by combining all resulting gaps 

of the center sequences that are 

uniquely aligned with one of the 

non-center sequences. [12] 

CS is easily implemented and runs in 

O(n
2
L

2
), where n is the number of 

input sequences, and L is the length 

of the longest input sequence. 

However, the algorithm is 

sometimes referred to as a “quick 

and dirty” method of generating a 

multiple alignment because it only 

guarantees that a resulting alignment 

is at most twice the accuracy of the 

optimal alignment. [12] 

Table 1: Our choice of MSA algorithms. 
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 Desription Merits and Critiques 

N
ei

g
h

b
o
r 

J
o
in

in
g
 (

N
J
) 

Neighbor joining is a simple process 

wherein a method of measurement is used to 

evaluate the distance between sequences, 

building the tree greedily with closest 

sequences being conglomerated with one 

another, and resolving later sequences after 

treating the combined sections as a unified 

sequence for the purpose of reevaluating 

distances [21]. 

NJ is computationally efficient 

since it only makes local 

decisions during tree building. It 

works well with a large set of 

sequences [25]. Aside from its 

greedy nature, it can obscure 

ambiguities in data since it only 

produces one tree. 

M
a
x
im

u
m

 L
ik

el
ih

o
o
d

 

The core concept of ML is to find a 

phylogenetic tree that has the highest 

probability (likelihood) of a given tree 

yielding the observed outcome [8]. The 

likelihood of a tree is calculated as the 

product of the likelihood values of all 

evolutionary transitions inferred by the tree 

structure. To find a tree with the highest 

likelihood, we first start by maximizing the 

likelihood of a topology
1
. By iteratively 

optimizing the length of all branches within 

in a topology, we can obtain the maximum 

likelihood value of the topology. Using one 

of the two topology-searching methods (see 

the next section), we can then compare the 

maximum likelihood values of topologies to 

find a tree structure with the highest 

likelihood [8]. 

While ML might produce more 

accurate trees when compared to 

other reconstruction methods, it 

is computationally costly, mainly 

due to the likelihood calculations 

in the branch optimization 

process. ML makes several 

assumptions about evolution in 

order to make likelihood 

calculation simpler. This makes 

it harder to account for 

phenomena, such as insertion or 

deletion mutation. In this project, 

we resolve this problem by 

assigning an imaginary 

nucleotide for gaps [8][7] 

Table 2a: Our Choice of reconstruction algorithms. 

Tree searching methods 

ML and MP fall into a greater class of tree “scoring” algorithms. Scoring algorithms 

define an objective scoring function, and the user can utilize a variety of algorithms to 

search through tree space. In this study, we implemented two types of tree searching 

algorithms. The first approach is a heuristic approach that begins with a tree that 

contains just two randomly chosen species. The final tree is progressively built up  

                                                   
1 Note that, with different branch length assignments, one topology can represent multiple different 

tree structures. 
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 Desription Merits and Critiques 

M
a
x
im

u
m

 P
a
rs

im
o
n

y
 (

M
P

) 
“The maximization of parsimony” or 

preferring the simplest of otherwise equally 

adequate theories is the guiding principle in 

MP. With the assumption that evolution is 

inherently a parsimonious process, 

Maximum Parsimony values phylogenetic 

trees where the least evolution is required to 

group taxa together [9]. The objective 

function we attempt to minimize is tree 

“length”. Tree length refers to the minimum 

number of mutations required to explain a 

given topology. To determine the length of a 

given tree, Fitch’s Algorithm [10] is used. 

We use one of the two topology-search 

methods to find the most parsimonious tree. 

Because mutations are rare, the 

tree of “minimal evolution” is 

likely a good approximation of 

the actual evolutionary history of 

a system. However, obviously, 

evolution is not a completely 

parsimonious process, though it 

is assumed to be in Fitch’s 

original method. In addition, 

because Maximum Parsimony 

uses heuristic methods in 

searching tree space, obtaining 

the most parsimonious tree is not 

guaranteed. 

M
a
rk

o
v
 C

h
a
in

 M
o
n

te
 C

a
rl

o
 (

M
C

M
C

) 

MCMC is a widely used tree sampling 

approach. It starts with a parameter space 

and a randomly selected tree, proposes a 

new tree parameters based on the current 

tree, accepts or rejects this new proposal, 

and repeats this process to create a 

distribution of sampled trees. Using the 

appropriate proposal and decision-making 

algorithms, the later samples after a burn-in 

period [15] will be similar to the true 

distribution of trees. In our case, we use the 

GLOBAL and LOCAL with a molecular 

clock [15] for parameter proposal, and the 

Metropolis-Hastings algorithm to decide 

whether the proposed tree will be accepted. 

Since MCMC depends on the 

underlying likelihood model, 

data sequences generated by the 

best fitted model would likely 

differ from genuine data 

regarding composition of amino 

acids, locations of stop codons, 

and other biologically relevant 

features [15]. Another problem 

is its ability to correctly identify 

the posterior probabilities of the 

collection of highly probable 

tree topologies. It is difficult for 

a particular simulation to visit 

new regions of parameter space 

once it gets stuck in an old 

region [15]. 

Table 2b: Our choice of reconstruction algorithms. 

from this simpler tree by adding one species at a time [8]. The second approach 

begins with a randomly constructed tree containing all n species, inserted arbitrarily, 

and uses hill-climbing to arrive at a local optimum [28]. The former method runs 
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significantly faster due to its smaller topology search space. However, the outcome 

of the algorithm will depend on the order of addition of the species. On the other 

hand, the latter method produces a tree that is independent of species ordering, but 

the run time is significantly worse because it requires more scorings of larger trees. 

Previous work 

Previous studies of the relative efficiencies and correctness of these algorithms are 

extensive but inconsistent. Most studies reach a consensus that distance-matrix 

based algorithms (i.e. NJ) generally outperform MP in both correctness and 

efficiency, regardless of nucleotide substitution rates. This is because MP only uses 

sequence information from informative sites, and because it cannot adjust for 

multiple mutations [23]. Other studies claim that with uniform rates of evolution 

among branches, distance methods are inferior to parsimony both with short 

sequences with low rates (0.01) and with long sequences with high rates (0.1), and 

were slightly superior in the other cases [14]. 

In comparing NJ and ML methods, study results also vary. Saito, Naruya, and 

Imanishi state that when constant rates of nucleotide substitution rates among sites 

are assumed, the NJ method showed slightly better performance than ML, but 

inferior to ML when substitution rates varied drastically [20]. In contrast, Hasegawa, 

Masami, and Fujiwara find that NJ is also robust to heterogeneity of evolutionary 

rates among sites given that heterogeneity is considered in estimating the 

multiple-hit effect [13]. In comparing estimation of tree branch lengths, previous 

work suggests that when a low nucleotide substitution rates (0.01) is assumed, NJ, 

MP, and ML are equally successful, while for higher rates (0.1), ML is slightly 

better [14].  

In terms of computational time, Saito, Naruya, and Imanishi conclude that NJ has 

the best performance [20], while others propose that when using different distance 

measures and nucleotide transition/transversion rate (R), NJ and ML perform 

differently [26]. When large data sets are considered, MCMC can be quite 

computationally intensive [22]. Our study aims at addressing these inconsistencies 

in the current literature through comparative efficiency and correctness analysis of 

these algorithms. 

Evaluation Methods 

In order to properly compare alignment and reconstruction methods, we decided to 

use the following distance metrics.  
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Multiple Sequence Alignment comparison 

In order to evaluate the qualities of the MSA algorithms, we calculated the total 

distance of output multiple sequence alignments, using the following equation. 

                ∑
      

     
  

                            

 

Where L is the sequence length, α is the total number of non-matching indices 

between two sequences, and β is the total number of non-dual-gap positions. 

Quartet distance: Topological Metric 

To compare the similarity of topologies numerically, we employ a “quartet” based 

method, first proposed for this purpose by Estabrook, McMorris and Meacham [6]. A 

quartet is a phylogenetic tree with only four species, divided by two internal nodes. To 

compute the quartet distance between two phylogenetic trees, for each size four subset 

of species, compare the corresponding quartet reductions in both trees. If the quartets 

differ, add one to the total quartet distance. We implement Christiansen's method [2], 

which computes quartet distance in O(n
3
) time. 

Pairwise Path Distance: Branch Length Metric 

Because quartet distance doesn't account for branch lengths and many of our tree 

reconstruction algorithms produce weighted topologies, a secondary metric that 

accounts for this additional information is required. First proposed by Williams and 

Clifford [29], we utilize a version of pairwise pathlength distance similar to that 

presented by Steel and Penny [24]. The focus of this comparison method is computing 

all the pathlength between all pairs of species in a given phylogeny. To compute 

pathlength between all pairs of nodes in a weighted graph, we use the Floyd-Warshall 

algorithm [11]. 

More specifically, pairwise pathlength distance can be computed as follows. Given 

two trees with associated branch lengths T1 and T2 each containing species 

{S1,S2…Sn}, consider a fixed ordering of all possible species pairs <(S1,S2), (S1,S3) … 

(Sn-1,Sn)>. Let  1
⃗⃗⃗⃗  and  2

⃗⃗⃗⃗   be the ordered pairwise pathlength distances between the 

species specified in the ordering for T1 and T2. After normalizing these vectors such 

that each of their largest components is equal to one, the pairwise path distance 

between T1 and T2 is given by 

   𝑡ℎ  1  2  ‖ 1
⃗⃗⃗⃗ −  2

⃗⃗⃗⃗ ‖
2
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Experiments 

Comparing MSA Algorithms 

In order to compare the performance of the three MSA algorithms (CW, MSC, CS), 

we completed 14 runs for each alignment method for several numbers of sequences. 

Using the evaluation method described previously, we calculated the total distance 

of the resulting MSAs, and tested against each other in a student's T test. 

Synthetic Data Experiments 

We implemented a random data generator, which is capable of producing testing 

examples <T, D>, where T is a randomly generated phylogenetic tree containing n 

species, and D is a set of n sequences generated based on that synthetic tree. We can 

use D as input to a total of 18 combinations of the 3 MSA algorithms and the 6 

reconstruction algorithms. The output of these algorithms can be then be compared 

to the true tree T and the tree using either of our distance metrics. Our random data 

generator is governed by several input parameters, including the number of desired 

species, the global mutation rate, and the starting sequence length. Because of our 

limited computational resources, we were only able to execute a subset of the large 

number of possible experiment. In total, we completed tree reconstructions from all 

possible pairs of alignment and reconstruction algorithms in the Cartesian product: 

{CW, CS}x{NJ, MP-Progressive, MP Hill-Climbing, ML Progressive, ML 

Hill-Climbing, MCMC with likelihood}. We executed each of these 12 

reconstruction methods on 14 randomly generated datasets with varying number of 

species. The randomly generated datasets we used had a total number of species 

between four and eight. Furthermore, we have a constant mutation parameter and 

seed the mutation process with sequences of length 200. This gives us five distinct 

datasets.  

For each of the five datasets and 12 reconstruction methods, we evaluate the 

performance of our algorithms over 14 trials. To evaluate their outputs, we compute 

the average quartet distances and the average pairwise path distances, normalized to 

[0,1]. Notably, one of our reconstruction methods, MP, does not produce meaningful 

branch length predictions, so for any analysis associated with MPP or MPH, we 

only use quartet distance. Furthermore, we measure the average runtime of each 

algorithm in each scenario to quantify the computational efficiency of each 

approach. Questions we address with experiment one include: 

 Do different algorithms perform significantly better or worse when there are 

different numbers of species in the dataset? 
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 Does algorithm runtime depend on problem difficulty, rather than problem 

size? 

Real Data Experiments 

We have a dataset <T, D> where T is the commonly accepted phylogeny for 53 

species (50 primates and 3 non-primates), and D is a set of the DNA sequences of 

the mitochondrial cytochrome c oxidase subunit 1 (COX1) of those real species [18]. 

We decided to use the phylogeny of great apes because it is well-studied and 

commonly agreed upon [18]. This makes the commonly accepted ape phylogeny a 

great candidate for a “ground truth” to compare against. COX1 is a popular choice 

for phylogenetic reconstruction because it is highly conserved due to its 

involvement with aerobic respiration [17]. To produce varying numbers of species 

in our input data, we can select random subsets of the 53 extant species for analysis. 

 14 test examples <T, D> with 5 species. 

 14 test examples <T, D> with 8 species. 

Due to the computational intensity of the experiments, we were only able to run 

Clustal-W alignments paired with our six reconstruction methods for each of these 

28 datasets. Questions we address with experiment one include: 

 Do the random data results match the real data results? 

 Which algorithm performs fastest on the real data? 

 Which algorithm produces the most accurate tree on the real data? 

Reconstruction Hypotheses 

We hypothesize that the method with CS and NJ has the shortest average running 

time on randomly generated data due to its algorithmic simplicity. We believe that 

CW/ML and CW/MCMC will perform better than other methods in terms of the 

accuracy of tree reconstruction on the random data because these algorithms make 

fewer “binding” local decisions that might cause a build-up of errors. 

Results 

MSA Algorithms 

Method comparison Real data Synthetic data  

CW-CS -2.265 -0.666 

CW-MSC -8.252 -2.016 

CS-MSC -5.899 -1.309 

 Table 3: the result of the MSA experiment. 
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Each entry of Table 3 relates to the t-statistics of the former method being worse 

than the latter using our evaluation described in the previous section. Hence in the 

analysis of the real sequences of DNA every result was significant at p=.05 meaning 

we get a hierarchy of CW>CS>MSC in terms of accuracy on real data, with respect 

to our test statistic. However on the much shorter synthetic sequences of 1/8 length 

the real data we only see significance at the same level in the CW-MSC comparison 

Synthetic Data Experiments 

In terms of the pairwise distance metric, Figure 1 illustrates the accuracy of our tree 

outputs in terms of pairwise distance. Notably, NJ and ML Progressive consistently 

did better than other reconstruction algorithms. On the other hand, the trees 

produced by the MCMC method did significantly worse than trees produced by any 

other reconstruction method. Choice of MSA algorithms did not have a visible 

effect on the accuracy of a resulting tree.  

The result for the quartet distance analysis is represented in Figure 2. Similarly 

reconstruction with NJ, MP Progressive, and ML Progressive methods outperformed 

other methods. Again, choice of MSA algorithms did not have a visible effect on the 

accuracy of a resulting tree. 

 

 

Figure 1: The result of pairwise pathlength distance analysis on all combinations of 

MSA and reconstruction algorithms with 8 synthetic species.  
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Figure 2: The result of quartet distance analysis on all combinations of MSA and 

reconstruction algorithms with 8 synthetic species. The red dotted line represents the 

distance between a randomly guessed tree and the original tree. 

Real Data Experiments 

ML with the hill-climb search performed relatively better on the real data than on 

the synthetic data, in terms of both distance metrics (Figure 3). The performance of 

other algorithms remained similar. 

 

  

Figure 3: The result of the pairwise pathlength and quartet distance analysis on the 

trees reconstructed from the DNA sequences of randomly chosen 8 primate species.  
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Running Time Evaluation 

Runtime analysis of both synthetic and real data (Figure 4) suggests the following: 

 NJ gave the fastest performance. 

 ML performed worse than Maximum Parsimony. 

 MCMC performed slower than ML for smaller synthetic data sets, and faster 

than ML hill-climbing for bigger synthetic data sets. 

These results are similar when using Center Star and MUSCLE alignment 

algorithms. 

 

  

Figure 4: Runtime comparison of reconstruction algorithms on synthetic (right) and 

real (left) datasets using CW as a MSA algorithm. 

Discussion 

Tree Accuracy 

In terms of pairwise distance metric, ML Progressive outperformed ML Hill-climb. 

The only difference between the two reconstruction algorithms was their topology 

searching method: progressive vs. hill-climb approach. The difference in 

performance between these two algorithms can be explained as follows. The 

downside of the progressive approach is that it makes local decisions when 

searching through the space of possible topologies, and thus, a resulting tree 

topology can sometimes be unreliable. However, this does not have a big impact 

when trees are evaluated on pairwise distance, because it only measures the 

distances between pairs of leaf nodes; pairwise distance does not account for the 

position of a node within a tree. On the other hand, the hill-climb approach can 

sometimes get caught in a local optimum. In our case, it is likely that the downside 

of the hill-climb approach had a larger impact on resulting trees. 
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For quartet distance metric, Maximum Parsimony also achieved results with equally 

high accuracies as NJ and ML methods. This is in agreement with [14], which 

suggests that under low nucleotide substitution rates, NJ, MP, and ML should be 

equally successful. Hill-climbing approaches performed significantly worse than 

progressive approaches in terms of quartet distance metric. Again, this is likely due 

to the fact that hill-climbing approaches can sometimes only find the local optimal 

topology rather than the true global optimum. 

NJ produced accurate results in our study for both pairwise distance and quartet 

distance. This was in accordance with [20], which suggested that NJ performs 

slightly better than ML methods under constant nucleotide substitution rates. 

MCMC performed significantly worse than other reconstruction algorithms in terms 

of both quartet and pairwise distance metrics. This is likely because we did not run 

the algorithm long enough to find a reasonable global optimum. In order to find 

trees close to the global optimum in our sample space, the suggested number of 

iterations was 2000 [15]. Due to the time constraints in our project, we only ran 200 

iterations. 

 

Figure5: Pairwise pathlength distance of several methods over 

varying numbers of species. 

In Figure 5, we compare the correctness of tree output of various algorithms when 

problems increase in size. Notably MCMC becomes increasingly less accurate when 

the number of species increases. This is likely a reflection of the fact that tree space 

is less able to be explored in a fixed 200 iterations when more species are added. 

Furthermore, using likelihood and hill climbing appears to become less correct and 

more variable for larger problems as well. Because the objective function increases 

significantly in complexity as the number of species increases, it's likely the case 

that getting caught in local optima becomes increasingly common. On the other 

hand, NJ and MLP perform relatively consistently, indicating their potential 

accuracy on larger datasets. 
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Running Time 

The expected efficiency of NJ is consistent with our experimental results. ML, on 

the other hand, is considered computationally costly with progressive topology 

(O(mn
6
)) and with the hill-climb approach (O(kmn

5
)) due to the branch optimization 

process. MCMC, which uses ML's likelihood calculations, is also computationally 

expensive. These theoretical observations also agree with our experimental results. 

MP had a performance speed that fell in between NJ and ML, which also fits our 

expectation. 

Conclusion 

Based on our experiments with both synthetic and real data, and our analysis of both 

run-time efficiencies and the accuracies of our algorithms, we conclude that for data 

sets with similar properties to those of our data (i.e. short sequences, low and 

constant nucleotide substitution rates), Neighbor Joining should be used in order to 

achieve the best efficiency and accurate results. Maximum Likelihood with 

progressive tree search creates equally accurate trees, but is far more 

computationally expensive. 

However, due to the complexity of the real-world data sets and their varying 

characteristics, algorithms should be carefully chosen in order to obtain accurate 

results. Based on our results, we cannot determine the total superiority of a specific 

reconstruction method. In addition, there is no guarantee that the details of our 

implementation match those in the literature we surveyed. Nonetheless, our study 

provides a comparative approach that future research alike can undertake. 

In the future, we would like to examine more types of synthetic data (perhaps 

varying mutation characteristics) and optimize our implementations in accordance 

with modern advancements to get a better sense of the current state of the field. 
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