

A Proposed Method for Achieving Increased Software

Maintainability Through Documentation

Justin Huber

Computer Science

University of North Dakota

Grand Forks, ND 58201

justinhuber86@gmail.com

Abstract

Software maintenance is the final and, potentially, can be the longest and most costly

stage in the software engineering process. Software defects; along with changes in

business practices, the software operating environment, and customer requirements are all

ongoing long after the release of a software system and so it is important for software to

evolve alongside them in order to continually meet these needs. The ability of, and ease

in which software upkeep and change is performed is an important software quality

attribute called maintainability. Software maintenance however is an expensive process

in both time and financial cost and can account for a majority of a system’s overall

lifetime cost. Maintainability is discussed and a method for obtaining a higher level of

maintainability through documentation is proposed.

1

1. Introduction

Change is an inevitable and software must adapt to meet the ever-changing needs of its

operating environment, stakeholders, and users. In order to satisfy these needs, software

must be maintained, modified, and updated from the design, development, release, and

post release phases. Change does not come cheap however, as making changes to the

software costs time, resources, and funding. Information systems, for example, can use

up to 80% of their budget on maintenance costs alone [21]; and over any software’s

lifetime the cost of [6] change and upkeep can amass to at least 50% of the total system

cost [26]. It has been shown [3] that design decisions have an impact on maintenance

concerns and can have long lasting and irreversible effects on the software. Thus

maintainability has become an important consideration when designing any software

system and there is a rise in programmers whose focus is primarily on maintenance.

According to Capers Jones [25] since 2000 the number of programmers in maintenance

will have risen 50% from 6 to 9 million and is projected as 67% of the total programmer

work force. This 50% increase trend is shown to continue in the next 10 years. Legacy

systems are a big contributor to this statistic as the cost of maintenance compared to

bringing the system up to date is more cost effective [25]. Statistics like these show that a

balance should be struck between system cost and change, or maintainability. As the

difficulty of implementing change raises so too does cost as the system will require more

resources and development time.

 It is clear that a method for achieving a higher degree of software maintainability is

crucial to not only the product’s success, but a company’s bottom line as well. A building

architect knows that the ability for a structure to be changed or expanded upon starts at

the foundation, its architecture. If the design does not accommodate change well, it

becomes increasingly difficult, possibly impossible, for updates and maintenance to take

place; and the same can be said for any software system. Current solutions for evaluating

software, such as the Architecture Tradeoff Analysis Method (ATAM) [16] and the

Software Architecture Analysis Method (SAAM) [17], focus on the architecture and

design of the system; showing that quality attributes, such as maintainability, start at the

architecture and design phase in the software lifecycle. Scenario generation and analysis

is used to determine, in a qualitative way, how well architecture adheres to a given

software quality attribute. Methods such as these work in the general sense, where a

system can be analyzed based on any software quality attribute, such as performance or

availability, but do not focus on one single attribute, nor do they focus on all the

components that affect the chosen attribute. A more focused evaluation method has the

potential for uncovering more information about the desired quality of a system at

different levels depending on the attribute chosen. Maintainability, for example, can be

affected not only by the software’s design, but by its documentation, which starts at the

requirements and specification stage of the development cycle.

This paper seeks to uncover that potential by presenting techniques for increasing

maintainability in a software system through the documentation from each phase of the

development cycle starting with requirements, to code, and finally testing. These three

stages continue long after the release of software and are intertwined in a cycle of

2

documentation change alongside system change. The remainder of this paper is organized

as follows. Section II and III include a survey of software maintenance, the different

variables that affect maintenance, and current methods available for evaluating

maintainability in software systems through architecture. Section IV will present a new

method for evaluating maintainability, followed by an example in Section V. Finally,

future applications, conclusions and current issues or open research questions for the

method are provided in Sections VI and VII.

2. Background

2.1 Maintainability

In software engineering two common types of requirements described are functional and

nonfunctional [4][26][5][14]. Functional requirements detail what a system should be

doing and how it should behave. Functional requirements can be described through many

different means, such as requirements documentation, use cases, and user manuals to

name a few. Nonfunctional requirements are a way of measuring the system behavior,

based on the functional requirements and are also known as quality attributes. Some

common quality attributes include performance and availability [4] which are concerned

with, but not limited to, speed and uptime functional issues respectively. There are many

other software quality attributes used to describe software systems, but one, modifiability,

is closely related [8] to maintenance.

Modifiability is about change, the cost of change, and the probability of change [4].

Modifications can range from simple code or design changes, such as feature

optimization, addition, and deletion, to complete system overhauls, such as changing to a

more accommodating framework, database, or architecture. The types of change are

explained in a subsequent section. Cost [2] can be split into two types, financial and time.

Financial costs are accumulated through labor and hardware or software changes. Time

costs are accumulated through the time it takes to complete a change, and financial costs

from labor are a direct consequence of time. The longer a modification takes to discover,

implement, test, and document, the higher the cost of that change; time and resources

spent could have been made on other projects. For the purposes of this proposal, the term

updatability has been generated to describe a quality attribute defining the ease in which

modifications can be implemented successfully. Difficulty of change is attributed to

manpower and is correlated with time cost. As the difficulty of modifications rise, so too

do the number of workers required. Finally, modifiability is also concerned with finding

the probability of change. Change difficulty and the likelihood change will or will not be

required are important in determining if system design alterations should be made in

order to accommodate more high-risk modifications.

Combining these two quality attributes, a more detailed definition can be derived and

stated as: the capability of, or ease in which, a software product can: improve on

performance or other quality attributes, add new features or improve on old ones, be

reused (with modifications), adjusted to changing requirements and environments, or

3

fault corrected; all of which are called for by either stakeholders, customers, or the

operating environment. Maintainability, then, can be used to describe both of these

properties and can be defined as the cost and capability of a software product to adapt to

meet the changing needs of stakeholders, customers, and environments.

2.2 Types of Change

At its core, maintainability is about change and sustainability. The software development

process [26] ends on a continuing cycle of upkeep and change from both internal and

external sources. As mentioned prior, there are many types of change that range from

simple bug fixes, to entire system restructuring. Every modification is different and

unique in its own right, however, they can be categorized together by similar traits in

order to more easily identify how best to analyze and implement them. There are four

categories of change [17], which were derived [22]. These will be listed below and

described in more detail in the paragraphs that follow.

1. Capability Extension: Addition or enhancement of features

2. Capability Deletion: Removal of features

3. Environment Adaptation: Changes in hardware or environment software

4. Restructuring: Optimization and reuse of components and services

Any additional features to be added, or enhancements made to current features are

categorized under the first change category, capability extension. The need for a new

feature could be caused by the necessity to keep up with competing software, changes in

business practice (internal or clientele), or to fulfil requirements that were missed on the

initial release, which is common in agile development. Feature enhancements are about

making additions to, or fixing problems to currently implemented features. This is where

most bug fixes would be categorized and where the general term, maintenance, most

closely fits.

The removal of features is categorized under the second type of change, capability

deletion. Like capability enhancement, capability deletion is dictated by the clientele, but

can also be driven by the development team. Over time, features can go unused, become

unwanted or, in the case where a lot of change is focused on one feature, a hindrance to

development. If a customer no longer needs a feature, or it becomes apparent that a

feature is no longer relevant, a removal request may be put in. Features that continually

require maintenance may also be determined as a hindrance to development, in which

case they could be deleted and/or re-implemented.

The third type of change, environment adaptation, is about changing the system to meet

the demands of the environment in which the software is implemented. These types of

change are either hardware or software driven. Hardware environment changes involve

updating the software to perform on a different hardware than originally intended, such as

becoming compatible on mobile platforms where it was originally designed for use on a

PC. Software environment changes involve updating the software to perform with other

software than originally intended, such as becoming compatible with the Linux operating

4

system where it was originally designed for use on a Windows platform.

The fourth and final type of change is restructuring. Restructuring is about changes that

affect quality attributes, such as performance, to either individual features or the system

as a whole; as well as changes to system components or features for reuse in other

software, or changing the current software to use reusable system components or features.

The preceding paragraphs gave only a summary of what each type of change offers.

There are many change requests that can be generated for all types of software, and each

type of change comes with its own documentation and is affected differently by the

change request, software, and requirements. Software architecture and documentation

play an important role in change and are discussed in sections 3 and 4.

3. Maintainability Through Architecture

Software architecture is the “set of principal design decisions made during development

and subsequent evolution [28].” These design decisions include what style, or framework,

the system will be built under such as an object-oriented, layered, or client-server style,

among many others [24], as well as quality attributes such as maintainability,

performance, availability, security, etc... Selecting and building from a proper

architecture based on the requirements of the software can help ensure a smoother

development cycle and future success post-release. Decisions made during the

architecture design have long lasting impressions on a desired quality attribute, as certain

architectural styles are better suited for different sets of qualities and the four types of

change are each affected differently depending on the architecture. The following sub-

sections detail characteristics of maintainability in architecture, such as cohesion and

coupling, as well as current known methods for evaluating for software maintainability.

3.1. Maintenance Tactics

If nonfunctional requirements, or software quality attributes, are used to measure system

behavior set by functional requirements, then tactics [4] are used to measure

nonfunctional requirements. Tactics, or metrics, are the techniques used to attain a

desired quality attribute in software architecture, with each attribute containing its own

set of tactics. Primarily, there are three tactics for maintainability: coupling, cohesion,

and size. Each tactic is used for determining maintainability in documentation,

architecture, and implementation.

Coupling is used to describe how different aspects of the system, internal or external, are

linked. Maintainability is concerned with how these components are linked by change.

For example, in speaking of architecture, if making a change to one system component

requires a subsequent change in one or more other components, they are coupled. As

coupling between components, documentation, code, etc. rises, so too does maintenance,

which lowers the degree of maintainability.

5

Cohesion is used to describe how different components of the system are focused on the

function given to them; if a system component was designed to perform a specific

function, it should operate only within that function definition. The more focused a

component is, the higher the cohesion. Cohesion is important to maintainability in that as

the level of cohesion in system components rises, the coupling between them tends to

drop since components are have clear, separate goals.

Size is important to maintainability in terms of cost. As the size of the program, modules,

system components, and code increase so too does the amount of time it takes to make

changes. Increased time cost, as discussed earlier, will bring rise to financial cost. A

smaller program will have fewer components and, ideally, less code than a larger

program which will take less time and personnel to complete modifications.

Maintenance tactics are an important tool for measuring maintainability in software

systems. The examples above described how tactics affect the software at an architectural

and implementation level. Maintainability tactics also play a role at the documentation

level and are further discussed in section 5.1.

3.2 Software Architecture Evaluation Methods

Since software architecture design occurs so early in the life-cycle, it is important to

detect issues with nonfunctional requirements before determining too deep into

development that the software does not meet them. For those systems that require a high

level of maintainability, a platform for which to evaluate this quality is important in

determining the success of the architecture in meeting the requirements. There are many

methods currently available for evaluating software architectures, two of them are

discussed in the proceeding paragraphs.

The Software Architecture Analysis Method (SAAM) [17] is a, scenario based, software

architecture evaluation method whose goal is to determine if the architecture fits a

desired quality attribute, given a set of testable scenarios. The method is built so that any

quality attribute can be chosen for evaluation, given a proper set of scenarios and system

component definitions. SAAM uses three perspectives for evaluating the architecture:

functionality, what the system does, structure, components and connectors, and finally

allocation, how the function is implemented in the structure. SAAM has been

demonstrated using modifiability as the test, and been shown it to be effective [17].

While SAAM provides a method for evaluating one chosen architectural quality, it isn’t

concerned with the tradeoffs from choosing one attribute over another. It is said that

every action has an equal and opposite reaction; the same can be said about design

decisions in software architecture. The Architecture Tradeoff Analysis Method (ATAM)

[16] was created to find these opposite reactions, or tradeoffs, when choosing a particular

quality attribute in the software design. There are those quality attributes that share

certain desirable effects on the system, and there are those that trade off from one

6

another, such as having higher availability also means that security must be increased, or

having higher complexity reduces ease of modifiability. Understanding and recognizing

these tradeoffs is paramount during architectural design as there could be several

desirable quality attributes needed for the system, yet 2 or more negatively impact the

other. A balance must then be struck in order to reach the goals set forth by the

requirements and architecture; ATAM attempts to accomplish this through a seven step

scenario driven process which will not be listed here. The issue with this method as well

as SAAM, is that they lacks focus and don’t not give any quantifiable data, or metrics,

representing the suitability of a specific quality of the software architecture, such as

maintainability. For a more detailed analysis of specific attributes, enhancements would

need to be made.

The preceding architecture evaluation methods are just a small sample of what is

available. There are many other software architecture evaluation methods [1], some that

fit multiple quality attributes, such as the Quality Attribute Workshop (QAW) [7], a

lighter version of the ATAM, and some that have been shown to qualitatively and

effectively evaluate for maintainability, such as the Quality-driven Architecture Design

and Analysis Method (QADA) [20]; and many more that are beyond the scope of this

paper.

4. Maintainability Through Documentation

The previous section described how the early design decisions, or architecture, can have

long lasting effects on system maintainability. However, an even earlier stage in the

software engineering process, requirements and specification elicitation and

documentation, where the functionality is defined and documented, can be just as

impactful. Software creation starts and ends with documentation, beginning with the

requirements and ending in a repeating cycle of maintenance and testing. Detailed and

concise documentation throughout the development process is a key component [12] to

the longevity and maintainability of software; and lack of proper documentation has been

shown [27] to make a significantly negative effect on the maintenance quality and

success of software. Documentation is the blueprint for which designers, programmers,

and testers use to make sure that software maintenance requests are implemented, or

discarded, correctly. It is important that along with the architecture and design, the

documentation be outfitted for software maintainability as well. Maintainability tactics

for architecture should transfer well to the documentation; along with a method for their

application in section 5. The following paragraphs detail three areas of documentation:

requirements, code, testing, and maintenance requests.

Requirements and specification elicitation is the first stage of the software engineering

process. The requirements document is a form of external documentation that defines

what the software is and all of its proposed functions that are required to meet the needs

of the client requesting the software [26]. Software architecture and design implement the

functionality set by the requirements, so while they affect maintainability at a structural

level, the requirements affect maintainability at a conceptual level. Vague or incomplete

7

requirements will result in a poorly implemented architecture which inevitably will not

only drive up maintenance requests, but costs as well. The ease in which maintenance is

determined to be needed or discarded is also related to the quality of the requirements.

For example, capability extension or deletion (which includes bug or error fixes) requests

can be determined invalid or valid based on functionality defined in the requirements. An

invalid request would show that the software is working as intended or there was user

error, while a valid request would show that the implementation of the requirements was

incorrect, or a beneficial addition to the requirements can be considered. Detailed

requirements can also validate the need for the fourth type of change, restructuring, as the

documentation should also include functional behavior of the system.

Where the architecture and design implements the requirements, code implements the

architecture and design. Source code documentation is a form of internal documentation

that describes the intention of code, or its implementation of architecture. Documentation

includes, but needs not be limited to, comments on individual lines of code, functions,

and classes. Code is maintained by many different people and can often be by someone

other than who wrote it. Without proper documentation, any of the types of change

become difficult as different programmers may not understand, or the original

programmer forgets, the way the code is written and what parts it affects. External

documentation of code is also desirable. As how the requirements documentation

presents the software functionality, external documentation presents an organized and

detailed explanation of the source code. External documentation can be created through

internal methods, or third-party tools such as JavaDoc [18] that can auto generate

documentation based on a specific style of comment writing in the source code. Extra

documentation such as this can also help team members other than the programmers

understand the code, which could be especially useful for quality assurance.

Once code is finished, testing confirms that the code works and adheres to the design and

requirements. Testability of software is a determinant for software maintainability [8], so

testing documentation is also important to maintainability as every change will require a

test and subsequent regression testing to verify the change did not cause other functions

to stop working. Each test should to be outlined with a test case that is detailed enough

for any tester to perform, and keep track of what changes are being tested, or what

additional changes need to be made based on testing. Test documentation, like code

commenting, and requirements, should be detailed enough to provide the tester with all

the necessary information, but concise enough so that the actual tests are easy to read and

perform. Bad test documentation increases maintenance turnaround time which will

inevitably cause extra cost.

Documentation is an important component of maintainability for software system.

Without documentation, there is no base from which change can begin, thus causing

maintenance costs to rise. In order to prevent future costs, it should be beneficial to have

a standard documentation process for those systems that have a focus for maintenance. A

structure for setting up documentation for a more maintainable system is desirable and is

proposed in the proceeding section.

8

5. Method

As the level of technology rises, so too does the freedom to create software that will meet

the growing needs of clients and businesses. Increased technology comes with a price

however, not only in hardware or software cost, but in maintenance efforts as well.

Maintainability is concerned with handling this cost by reducing the difficulty of making

necessary change over time. The previous sections outlined what to look for in order to

make a more maintainable system, as well as present current known methods for

analyzing the current level of maintainability in software. However, these methods are

primarily architecture based and rely on maintenance scenarios for change. Scenarios are

also highly suggestive and will differ in meaning from one developer to the next, whereas

documentation should be consistent and concise for all within an organization.

Architecture implements the requirements and code implements the architecture. The

requirements document should be recorded first in developing software and the choices

made and level of detail presented in them have a lasting effect on the rest of the

development process. Poor requirements lead to bad or incorrect design which leads to

bad code. Transitively, bad or poorly written code and code documentation is a result of

unsatisfactory requirements. Thus, documentation then is an important element to

maintainability as the information presented allows for a higher level of understanding of

the system’s function and structure. The following paragraphs detail a proposed solution

to obtaining maintainability through documentation, first by showing how architectural

maintenance tactics can be applied to documentation, introducing three new tactics to the

current set, and finally detailing how they can be applied to the different areas of

documentation.

5.1 Tactics for Documentation

 The three tactics for achieving maintainability, as described previously, should translate

well from architectural design to documentation, with slight differences between them.

Cohesion among documentation pieces or articles provides a greater sense of

organization and, as with architecture, allows the documentation greater focus. Coupling

within documentation, as with architecture, should be kept low as the higher the coupling

among document articles or pieces grows, so too does the amount of change needed to

complete edits to the document. Size for documentation can be a detriment, as the larger

the document gets, the harder it may be to understand or find desired pieces. However,

this can be offset by a higher level of cohesion and by the amount of detail provided. The

original three tactics and their implementation to three levels of documentation,

requirements, source-code, and testing, are detailed below along with definitions for

understandability, traceability, and networking tactics.

Cohesion, coupling, and size tactics can also be applied to the requirements

documentation to promote maintainability, although some in different ways compared to

architecture. Much like the architectural components and code, a high level of cohesion is

desired for the requirements documentation. Similar functions, or smaller functionalities

9

that are part of a larger function, should be grouped together so they are easy to find and

understand when put into context of one another. Cohesion is closely related to how well

the documentation is organized, as a well-organized document will more likely exhibit a

higher level of cohesion. Requirement coupling can be used as an early detection of

maintenance issues that could occur as development of the software progresses. If it is

observed that multiple functions are coupled together it could prove worthwhile to

rethink the requirements before implementation begins to prevent future coupling

problems among components. Highly coupled requirements also create more work once

the requirements need to be updated due to change requests, as multiple related

requirements may need to be changed as well; which further raises maintenance cost.

Finally, size is an important factor for maintainability within requirements

documentation. As the size of the documentation increases, so does cost when changes

need to be made. However, the level of detail combined with size is what should

determine if the documentation is detrimental or helpful to system maintenance. A very

large but concise and well detailed requirements document should be more valuable, than

a short but poorly written document for example.

Maintenance tactics on code documentation will work slightly different than on the

source code itself. Cohesion with comments in code and their subsequent external

documentation are tied directly with how cohesive the source code is. Highly cohesive

source code will create cohesive external documentation as the generated document will

be based on the code presented. Coupling of code comments is undesirable and if the

same type of comment needs to be repeated more than once, it should simply be

referenced. Finally, when evaluating size, code commenting should be simple but concise

as greater detail may make the code harder to read. Extended detail can be woven into the

external documentation for more in-depth understanding.

Tactics used on test documentation is similar to the requirements. Test cases should be

highly cohesive, in that the case should focus on one function or, more preferably, one

piece of that function. As with code commenting, coupling among different test cases

creates more work, and if the same test needs to be done in another test it should simply

be referenced. Size is dependent on how detailed the testing documentation is. Testing

steps and goals should be well defined and laid out in such a way that anyone can run the

test, so the greater detail the better. A very small test case with vague documentation will

be harder to complete than a large case that is easy to understand and finish.

A fourth maintenance tactic for documentation, understandability [8], is the measure in

which how easily something, documentation in this case, is to be understood by the user.

For documentation to be understandable, characteristics such as conciseness, legibility,

self-descriptiveness, and consistency need apply [8]. For change to be implemented

easily, the documentation involved must be understandable by all those involved,

including the stakeholders, developers, testers, and clients. Requirements can split into

multiple versions where one is more technical for developers, and another where the

information is presented in a less technical manner for stakeholders and other users

within the company; a user manual may also be created for customers. Source code

documentation should be written so that it is understandable by current and future

10

developers; no short-hand for example. The external code documentation can be written

with a mix of technical and non-technical writing so that both developers and QA can

understand. Change requests and test cases should be very concise and provide easy

understanding as to what needs to be done in order to complete a maintenance request.

The next documentation maintainability tactic is the level of traceability within each

document type. Traceability is the ability for documentation to be followed, or traced,

through its history and application; and increases maintainability by providing a better

understanding of past or future changes to many different people involved in the

software’s development [11] [19] [15]. Traceability is used in a variety of engineering

concepts and tools such as software configuration management [9], a process for tracking

changes in code versions; and third party change request, bug, and test case repositories

such as FogBugz [10] which provide a means for organizing and tracking testing

documentation. During the life-cycle of a product, the software will undergo many

different modifications, typically by many different people, which oftentimes go

undocumented causing degradation of information and increased maintenance workload

[13]. A documented history of change within each level of documentation should provide

both higher understandability as well as future ease of maintenance.

Building on the idea of traceability, the final addition to the maintenance tactics set for

the different levels of documentation is a concept of internal and external document

linking, hereby called document networking, or simply, networking. Much like

networking among people, networking is concerned with providing references between

all the different levels of documentation, rather than history tracking. What this provides

is a quick reference lookup between all documents for any individual requirement, test

case, or code implementation. In this way, there should be less time spend going from

requirements checking, to code implementation, to test case generation or editing; as well

as less time spent attempting to understand all assets of a particular requirement, piece of

code, or test case. Internal networking requires that each item of documentation, different

requirements within the Requirements document for example, must be referenced to one

another within each requirement listing if they are in some way related. External

networking requires that each item of documentation references its corresponding

document within one of the other two documentation levels. External networking creates

a link between the requirements, code, and testing documents.

5.2 Applying Documentation Tactics

This section will describe the proposed steps for achieving a higher level of

maintainability. There are six steps in total, each applying the different maintainability

tactics detailed in the section 5.1: cohesion, coupling, size, understandability, traceability,

and networking. The following paragraphs will detail these six tactics and describe how

they can be applied to the requirements, source-code, and testing levels of documentation

either during or after development.

First is the application of cohesion. Cohesion in the requirements document is about

11

organization and keeping to the adage “a place for everything and everything in its

place”. The requirements document as a whole should fit within designated sections each

with different goals, such as functions, third party tools, operating environments, business

practices, glossary, etc.; with each individual listing in the document organized in the

same manner. Individual entries should also adhere to the same rules as architectural

level cohesion, in that they only entail information that is relevant to them. These

principles apply to source-code and testing documentation as well. Individual code

classes, lines, or functions need only be relevant to that specific item which is being

commented. Test cases within the testing document need only detail their specific case.

External documentation for code and an overall testing document if one exists ought to be

split into appropriate sections such as by requirement category, or design component.

Second is coupling and is concerned with direct ties between requirements, testing, and

code that will require parallel change with another entry in that document category. The

more coupling there is between different parts of each section or different sections, the

more work involved in changing the document as needed. A situation where changing the

documentation of one article will require the same change in another is not desired. For

example, if a function in code is commented on, those comments should not be attached

to that same function when used in another piece of code; rather it should be referenced.

The third application is size, which can be misleading in regard to documentation. In

evaluating architecture for size, the concern is about keeping components and code

shorter since the larger the size and complexity, the lower the ease of maintenance. For

documentation, the detail provided along with size is what is important. Vague or missing

information lowers the ease of understanding in making required changes. In general,

more comments can only help in understanding the code, unless written in poorly

documented short-hand technical terms (see step 4). Shorter sections of code with no

comments could potentially be harder to maintain than larger sections of code with highly

detailed comments. Small test cases can become harder to perform if the test description

and steps are vague.

Step four is ensuring understandability. Documentation is only as good as the way it is

presented for whom it was created. Code commenting and external documentation can be

more technical as it is meant primarily for programmers; however the level of technical

detail should consider the level of expertise of the programmers who will be using it. The

requirements document may need to be split into different versions, one for stakeholders,

another for users (a user manual), and another for the development team; with different

sections in each providing separate topics such as hardware, software, and

implementation [14]. Finally, testing documentation should be understandable not only

by programmers doing initial unit testing, but by the QA and testing teams if applicable.

More technical details for initial unit testing can be included at the beginning of a test

case, but as it gets passed into use testing, the detail and understandability should be

brought down to a simpler state.

Step five is the inclusion of change history for the assurance of traceability. Dates when

changes were made, names of the people that suggested or implemented the change,

12

version changes, and what was changed are all items to consider adding to

documentation. This could be done in a number of possible ways [15] [23]. The addition

of a history log within requirements, external code, or testing documentation that tracks

and lists these items in an organized manner such as by date or person is one such way of

including traceability. Individual parts of documentation could also include their own

history. Source-code commenting, for example, could comments where code was

updated, or at the top of the class with a list of changes as they have occurred. A

requirement within the requirements documentation may have a history section which

describes when the requirement may have changed. Testing documents especially will

want traceable information as not every test goes through the first time it is executed and

the same person may or may not be working on the test as it plays out, so a detailed

history is required.

The final step is the networking among documents. Requirements that are realized in

code should be linked, and test cases created for those requirements should be linked as

well. The goal is to ensure that each document type has a way to easily find a

corresponding entry in another document. A typical change request starts with the request

for change, followed by a validation of the requirements to determine if the change is

warranted, then by either a test if the request is for a bug, or a change in code, followed

by a repeated cycle of testing and code changes until the request has been fulfilled and

closed [26]; this is presented in figure 1a. Document networking requires that each time

during the maintenance and testing phase when a change is made that requires a change

in either of the other documents, the change is made there; this is shown in figure 1b.

The simple way to realize networking between documents is to establish a library type

system where each item (line, function, or class code, entry in requirements, or test case

for example) has an ID and that ID is used to reference itself in other documents. This ID

should always be accompanied by the corresponding ID from the other two document

levels. If no corresponding entry in another document is available then it may be omitted,

however this should be rare as any entry in the requirements document should be realized

in code and that code should have a means to be verified against the requirements.

Networking such as this can increase user understandability of a software feature as a

whole by providing reference points for additional information from other documents,

whether internal or external and is already used in established tools such as FogBugz.

When analyzing the documentation for networking it is important to look at how each

document is linked to one another and does the information provided in each document

allow for easy location of a corresponding entry in another document.

Through the use of varying evaluation methods, the application of maintenance tactics on

software architecture has been shown to be effective in increasing software

maintainability. Similar application into documentation could provide the same results.

Standard architecture maintenance tactics allow for less work when change is needed in

multiple documents. The addition of understandability, traceability, and networking focus

on lowering the time needed to understand and locate different components of

documentation in order to validate and implement maintenance requests by providing

history and references to related items.

13

Figure 1: Maintenance Cycle

6. Conclusion

Maintainability evaluation and tactics through architecture have been shown to be proven

methods for determining maintenance suitability in software systems. However, software

development does not begin with the architecture, but with the definition of system

requirements within the Requirements document. Documentation plays an important role

in software maintainability from the beginning of the development process with

requirements definition, down to the continuing cycle of testing and maintenance. Poorly

written requirements documentation can lead to misunderstandings of what is desired,

leading to incorrect or poor architectural design which leads to poorly written or broken

code, ultimately ending in low maintainability causing higher costs on an already costly

area of software development.

A proposal for increasing maintainability through the documentation presented. Using

proven maintenance tactics, from software architecture, on documentation provides a set

of general guidelines for achieving a higher degree of maintenance and understanding

among the different documents involved in the development process. Tactics offer a

direct correlation with change and the ease in which change can be implemented, while

networking and traceability adds yet another layer of ease when trying to not only update

change throughout all documents, but understand current and past versions of software.

An example has not been provided as development of this proposal is still ongoing and

part of continuing research by the author.

14

References

[1] Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., & Meedeniya, I. (2013).

Software architecture optimization methods: A systematic literature

review.Software Engineering, IEEE Transactions on, 39(5), 658-683.

[2] Banker, R. D., Datar, S. M., Kemerer, C. F., & Zweig, D. (1993). Software

complexity and maintenance costs. Communications of the ACM, 36(11), 81-94.

[3] Banker, R. D., Davis, G. B., & Slaughter, S. A. (1998). Software development

practices, software complexity, and software maintenance performance: A field

study. Management Science, 44(4), 433-450. 11

[4] Bass, L., Clements, P., & Kazman, R. (2012). Software architecture in practice.

Addison-Wesley Professional (pp. 117-129). 5

[5] Bell, T. E., & Thayer, T. A. (1976, October). Software requirements: Are they

really a problem?. In Proceedings of the 2nd international conference on Software

engineering (pp. 61-68). IEEE Computer Society Press.

[6] Bengtsson, P. (1998, August). Towards maintainability metrics on software

architecture: An adaptation of object-oriented metrics. In First Nordic Workshop

on Software Architecture (NOSA'98), Ronneby. 10

[7] Bergey, J., Barbacci, M., & Wood, W. (2000). Using quality attribute workshops

to evaluate architectural design approaches in a major system acquisition: A case

study (No. CMU/SEI-2000-TN-010). CARNEGIE-MELLON UNIV

PITTSBURGH PA SOFTWARE ENGINEERING INST.

[8] Boehm, B. W., Brown, J. R., & Lipow, M. (1976, October). Quantitative

evaluation of software quality. In Proceedings of the 2nd international conference

on Software engineering (pp. 592-605). IEEE Computer Society Press.

[9] Estublier, J. (2000, May). Software configuration management: a roadmap.

InProceedings of the conference on The future of Software engineering (pp. 279-

289). ACM.

[10] Fog Creek Software, Inc. (2000-2014). FogBugz. Retrieved from

www.fogcreek.com/fogbugz.

[11] Gotel, O. C., & Finkelstein, A. C. (1994, April). An analysis of the requirements

traceability problem. In Requirements Engineering, 1994., Proceedings of the

First International Conference on (pp. 94-101). IEEE.

[12] Graaf, B. (2004). Maintainability through architecture development. In Software

Architecture (pp. 206-211). Springer Berlin Heidelberg. 2

[13] Hayes, J. H., Dekhtyar, A., Sundaram, S. K., Holbrook, E. A., Vadlamudi, S., &

April, A. (2007). REquirements TRacing On target (RETRO): improving software

maintenance through traceability recovery. Innovations in Systems and Software

Engineering, 3(3), 193-202.

[14] Heninger, K. L. (1980). Specifying software requirements for complex systems:

New techniques and their application. Software Engineering, IEEE Transactions

on, (1), 2-13.

15

[15] Jarke, M. (1998). Requirements tracing. Communications of the ACM, 41(12), 32-

36.

[16] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere, J.

(1998, August). The architecture tradeoff analysis method. In Engineering of

Complex Computer Systems, 1998. ICECCS'98. Proceedings. Fourth IEEE

International Conference on (pp. 68-78). IEEE. 12

[17] Kazman, R., Bass, L., Webb, M., & Abowd, G. (1994, May). SAAM: A method

for analyzing the properties of software architectures. In Proceedings of the 16th

international conference on Software engineering (pp. 81-90). IEEE Computer

Society Press. 9

[18] Kramer, D. (1999, October). API documentation from source code comments: a

case study of Javadoc. In Proceedings of the 17th annual international conference

on Computer documentation (pp. 147-153). ACM.

[19] Marcus, A., & Maletic, J. I. (2003, May). Recovering documentation-to-source-

code traceability links using latent semantic indexing. In Software Engineering,

2003. Proceedings. 25th International Conference on (pp. 125-135). IEEE.

[20] Matinlassi, M. (2004, June). Evaluating the portability and maintainability of

software product family architecture: Terminal software case study. In Software

Architecture, 2004. WICSA 2004. Proceedings. Fourth Working IEEE/IFIP

Conference on (pp. 295-298). IEEE.

[21] Nosek, J. T., & Palvia, P. (1990). Software maintenance management: changes in

the last decade. Journal of Software Maintenance: Research and Practice,2(3),

157-174. 7

[22] Oskarsson, Ö. (1982). Mechanisms of modifiability in large software systems.

VTT Grafiska,.

[23] Ramesh, B. (1998). Factors influencing requirements traceability

practice.Communications of the ACM, 41(12), 37-44.

[24] Shaw, M., & Garlan, D. (1996). Software architecture: perspectives on an

emerging discipline. 19-32, 38, 51. 15

[25] Sneed, H. M. (2008, September). Offering software maintenance as an offshore

service. In Software Maintenance, 2008. ICSM 2008. IEEE International

Conference on (pp. 1-5). IEEE. 6

[26] Sommerville, Ian. Software Engineering, 5
th

 Edition. Addison-Wesley Publishing

Company, 1996. 8

[27] Sophatsathit, P. Lessons Learned on Design for Modifiability and Maintainability.

4

[28] Taylor, R. N., Medvidovic, N., & Dashofy, E. M. (2009). Software architecture:

foundations, theory, and practice. Wiley Publishing. 20

