
On Ramp to Parallel Computing

Zackory Erickson
Computer Science

Univ. of Wisconsin-La Crosse
La Crosse, WI 54601

erickson.zack@uwlax.edu

Samantha S. Foley
Computer Science

Univ. of Wisconsin-La Crosse
La Crosse, WI 54601

sfoley@uwlax.edu

Abstract
Today parallel computers are used in almost every field of study. However they are difficult
to learn to use. Parallel computers are built for performance and must be used via the
command-line. Our project aims to increase the ease of use of parallel computers. Through
a web interface users will be able to interactively launch jobs on a parallel computer hosted
at their university. Users will gradually learn the tools needed to use parallel systems
directly, while still being able to do meaningful computation, right from the beginning.
As users feel more comfortable with parallel computing, they will be given more control of
the detailed build, configuration and launch settings. Throughout this paper we will discuss
the high level design and goals of this project, as well as the implementation details of the
prototype system we have developed. We would also like to invite users to evaluate the
system.

1 Introduction
Parallel computing has become the solution to increasing performance along the curve de-
scribed by Moore’s Law and thus parallel architectures are everywhere. Multiple processor
cores are common on commodity computers, from desktops to cellphones. Despite the
widespread availability of these architectures, many CS programs do not dedicate signifi-
cant time to parallel computing topics throughout their curricula. There are many reasons
for this, however the problem of access to parallel computers is significantly easier to over-
come today.

In addition to almost all commodity multicore hardware that students and faculty are using
for work and pleasure, distributed systems have also become cheaper and easier to obtain.
A cluster of computers can be easily created out of commodity hardware, by using older
machines [13] or Raspberry Pis [14]. Custom solutions, specially designed for higher edu-
cation, may be purchased through various vendors [7, 5, 2]. Each of these solutions make
parallel systems affordable and accessible on even the most modest budgets; however, they
do not solve the usability problem: parallel system software remains complex to use and
requires significant knowledge to set up.

The system software required to make parallel computers work efficiently is complex and
follows a very different philosophy than the multitasking personal computing environments
we are used to using on a daily basis. Parallel systems are primarily designed for perfor-
mance, and thus are designed to have the system software stay out of the way of the ap-
plication. To do this, a user must set up the application to run, and then ask the system
to launch it on dedicated resources when the required number of resources are available.
This means that the system will typically only allow one application to use a processor
core or node (logical unit of multicore processors) at one time. System software called
the resource manager is responsible for managing this access and facilitating the launch of
jobs. Many times there is more work than there are resources to fulfill this work, so another
layer of system software is needed to manage the ordering and scheduling of these jobs
(requests to run an application), which is called the batch scheduler. A user of a parallel
system must be adept at using these systems, in addition to the technology to write, build
and execute parallel programs. To make matters worse, the only way to interact with these
systems is through the command-line. New users to parallel computing must learn all of
these software tools, parallel programming, parallel architecture and how to navigate the
command-line all before being able to use a cluster. This steep learning curve prevents
many new users from learning to use parallel systems and many educators from teaching
parallel computing to students easily.

The goal of this project, On Ramp to Parallel Computing, is to develop a web-based envi-
ronment that will ease the user into using parallel systems. We do this by creating a familiar
point-and-click, web-based environment, with supporting documentation, that allows new
users to be able to use existing parallel systems. This approach allows users to run parallel
jobs immediately and safely, while learning the parallel computing environment gradually.
The target audience for this work is primarily students in undergraduate computer science

1

programs, but it could easily be adapted for use by students at lower and higher levels, as
well as in other disciplines where parallel computation is used.

This paper describes our initial design and prototype implementation. First, we will de-
scribe the current efforts to make parallel computing more accessible and easier to teach
(section 2). Next, we will describe the requirements for the project in section 3. The design
and corresponding implementation are described in sections 4 and 5. Finally, we conclude
with a discussion of the current capabilities and future work in section 6.

2 Related Work
There have been many fantastic efforts to make parallel computing easier to learn at vari-
ous educational levels. There are a few efforts that have served as the inspiration for this
work. Members of these projects collaborate to strengthen their offerings and we believe
our efforts work in concert with these efforts.

The hardware component of the trio of parallel computing education projects is the Lit-
tleFe [17]. LittleFe is a small, portable cluster that can be built for less than $3,000 or for
free if you contribute educational materials back to the project [18]. The cluster comes with
all necessary software components, and is fun and easy to build for faculty and students.
The system software for the LittleFe is provided by the Bootable Cluster CD (BCCD)
Project [16]. This project develops and maintains a full system software stack that is
portable and contains all the necessary software to boot and run parallel applications in
a parallel environment, including some example applications. Lastly, the Computational
Science Education Reference Desk (CSERD) [10] provides educators with computational
science applications and associated education materials. These curricular modules are de-
signed for high school and college settings. Several of these modules are included on the
BCCD which comes with a LittleFe at a buildout event. Taken together they form a com-
plete package of educational materials, system software, and hardware to teach parallel
computing. However, one must still be able to navigate the system at the command-line
and be adept at parallel computing in order to effectively manage the cluster and teach the
material. Students will still be thrown into the unfamiliar environment of command-line
Unix tools, batch scripts, and parallel programming. The On Ramp to Parallel Computing
project aims to make the transition from no parallel computing experience to running on a
cluster a bit smoother through a web interface, which is complementary to these and other
efforts to make parallel computing widely available.

Other hardware approaches to making parallel computing widely available include creat-
ing clusters out of Raspberry Pis [14], condor pools in computer labs [19], and traditional
beowulf clusters [13]. System software for clusters and more specific architectures can
be found for free, including the ROCKS software suite and package management tool for
educational clusters [8]. These efforts provide affordable and relatively easy to manage
cluster solutions, for someone who is familiar with parallel computing. However, the prob-
lem remains that one needs to be comfortable at the command-line and understand parallel

2

architectures and system software in order to even use the machine.

When examining the vast array of tools available for learning to program, many graphical
and web-based projects can often be found. Code.org [4] is a prime example of how a
website can be designed to help students (or really anyone) learn to program in a fun and
graphical way. As a user progresses through the tutorials, the complexity increases and
new information that is relevant for the user is presented. We aim to follow this model and
apply it to parallel computing.

3 Requirements
The purpose of this project is to provide an easy to use web interface for learning and using
parallel computers. The software requirements for the project revolve around the ease of
use and connection between a web interface and a target cluster. We assume that there is a
cluster available at the institution and someone who is familiar with parallel computing to
set up the necessary software for the system.

The web interface portion of the system must be able to accommodate multiple levels of
users, including new users, intermediate and advanced users. New users require informa-
tion about parallel computing, parallel architectures, and the particular application that is
being run. The web interface is a perfect place to be able to provide this information and
give the user a small number of execution parameters to launch a job, all on one screen.
For new users, prebuilt applications will be made available. Intermediate users should be
able to upload their own parallel applications and associated Makefiles. The web interface
should provide the necessary information to help intermediate users run their code on the
cluster effectively and allow them to edit the Makefile. Lastly, advanced users should be
able to also create and edit shell scripts to launch jobs, all from the web interface.

Cluster-side software is also needed to establish connections to the web interface allowing
users to interact with it remotely. First and foremost, this involves being able to launch
jobs on the cluster, via the existing batch scheduler and resource manager. The cluster-side
software must be able to handle multiple users and multiple jobs being launched simultane-
ously in a scalable fashion. Additionally, it should include the ability for users to monitor
jobs and for administrators to perform some basic administrative tasks from the web inter-
face. The cluster-side software must also be easy to install on any cluster.

4 Design
The initial design consists of three building blocks: a web interface, a web server and a
cluster. The web interface is the graphical portion of this project, which allows a human
user to interact with the entire system. The web server hosts the web interface for various
users. Lastly, the cluster is the target parallel computer that the user will interact with
through the web interface. Figure 1 shows the initial design with these three components.

3

Figure 1: The initial design diagram.

4.1 Web Service Design
In figure 1 we assume that a web interface is able to connect directly with a cluster, however
this is not the case. Rather the web interface works best when connecting to other web-like
technologies, and thus our cluster needs a way to communicate with the World Wide Web.
Therefore, our cluster needs to run a web service to facilitate the communication between
the cluster and the web interface. A web service is, as Wikipedia defines, “a method of
communications between two electronic devices over the World Wide Web” [12]. The web
service enables the web interface to send data directly to a cluster. The web service runs
as a daemon process on the cluster and acts as a middleman between data coming from the
World Wide Web (via our web interface), and the parallel computer itself. Further, a visual
representation of the web service integrated into our current design is displayed in figure 2.

Figure 2: Allowing a cluster to communicate with the World Wide Web through the web
service.

A major design feature of the web service is the ability to handle multiple connections, or
multiple users, at the same time. Figure 3 displays exactly how this should look. Further-
more, the web service uses multiple threads and processes to service multiple connections
and job launches.

The web service acts as a single entry point into the cluster from our web interface, and
thus is an ideal place to implement security protocols. The overall design for security on
the web service is straight forward. If the received data doesn’t first pass through a secu-
rity check, using a username and password, the data and files sent to the web service are
dropped. This prevents unauthorized data from being processed or allowed access onto the
cluster. This simple security model is similar to the existing command-line security model

4

Figure 3: The web service handling multiple web interface connections.

on most clusters and should be sufficient for educational settings.

4.2 Web Server Design
The main task of the web server is to host the web interface and make it available to multi-
ple users at the same time. Although not displayed on the above diagrams, the web server is
also used to initially setup the web service on the cluster. One feature we wanted to design
for was that a user can setup and install the web service on a cluster, using the web inter-
face. When a user requests to setup the web service on a cluster, we rely on the web server
to send all of the necessary setup files to the specified cluster, and then initiate the setup
process for the user. When all is said and done, the user’s cluster should have a running
web service, that was completely setup through the web interface.

Initially, the design used the web server as the intermediary between the web interface and
the cluster, as shown in figure 4. This meant that all communication would go through the
web server; however, we found that this would become a bottle neck and cause unnecessary
overheads in communication. Due to this, almost all communication goes directly from the
web interface to the web service on the cluster.

Figure 4: Using the web server as a middleman between the web interface and web service.

5

4.3 Web Interface Design
The web interface is the most important piece of the design, as it’s how we propose to
improve the usability of parallel computers. The primary goal of the web interface is to
replace the command-line with a graphical interface when launching a job on a parallel
computer.

Job launch is the primary activity for which users will be using the web interface. Launch-
ing jobs should be as simple for a new user, as it is for an experienced parallel computing
user. Thus, we have designed the web interface to support multiple user modes for various
levels of parallel computing experience. The only difference between one user mode and
the next is what launch options are exposed to the user, with those not exposed to the user
set to some default settings.

Viewing the results of the job is a secondary, yet critical, activity that users will perform.
When a launched job completes, a user is able to view the results of that job from within
the web interface. Users will only be able to see results from jobs they launched, not jobs
launched by others.

In order to make the web interface a self-contained learning and parallel computing envi-
ronment, documentation on how to use the web interface options, specific cluster details,
application details and parallel computing basics are provided. Without this system, a new
user learning to launch jobs on a cluster will often bounce between a variety of websites
and tutorials to learn all of the needed material. The goal of the web interface is to present
just the necessary information needed to launch a job using the exposed launch options for
each user mode. This information should also include in-depth information about every
option and feature available within the web interface in separate documentation built into
the web interface.

The web interface is also designed to allow users to connect with multiple clusters. In the
case that a user has access to multiple clusters, the web interface is able to establish con-
nections with multiple web services, as shown in figure 5.

Lastly, figure 6 displays the entire design for our project, incorporating the design features
described above.

6

Figure 5: The web interface connecting to multiple clusters, or web services, at the same
time.

Figure 6: A complete overview of the entire design for our project. For visibility, only a
single web server is displayed, however, it is quite plausible that users within the diagram
could actually be connecting to various different web servers.

5 Prototype Implementation

5.1 Web Service
When looking for a framework to use for our web service, we aimed for a framework that
had good support for REST (Representational State Transfer) calls [15]. We chose Cher-
ryPy, a python, object-oriented web framework, that has excellent support for handling
REST calls [3]. Since CherryPy is a python framework, we implemented the web service
using python 2.7. Python is widely supported and available on most clusters and parallel
computers, meaning our web service can be easily setup and run on many clusters with few
extra dependencies.

As described in the design, the user will send a request to the web server to setup a web
service on a given cluster. Setting up the web service on a cluster can be done through the
web interface, and requires only three pieces of information: a valid URL to access the

7

cluster, a username and password for an existing Unix user account on the cluster. Once
a user begins the setup process, the web server will send all necessary setup files to the
cluster, and then start the setup. After the setup is complete, the web service is started, and
will be running under the provided user account on the head node of the cluster. A virtual
user is also created to provide access into the web service.

When looking at using user accounts for authentication we had two main options: use the
Unix user accounts that already exist on a cluster, or implement virtual user accounts. At
the moment the web service uses a virtual user structure; however, as the project progresses,
the use of Unix users will also be implemented. A virtual user is implemented simply as
a directory structure, created within the Unix user account space that is hosting the web
service. With this, a virtual user can gain access through the web service’s authentication;
however, does not have access to log directly onto a cluster through SSH. There are a
variety of benefits that come with using a virtual user structure, including:

• Simple to setup, minimal maintenance, and increased flexibility.

• Virtual user accounts can be created or deleted on the fly.

• Usernames and passwords can be easily changed.

• Ability to add permissions to specific users.

• Easier for the web service to access a virtual user directory, versus a Unix user’s
directory.

Each user in the virtual user structure has their own security file which the web service
uses for authentication. This security file is created along with a user, and holds only two
pieces of information: the user’s username, and whether or not the user has admin permis-
sions. Once the security file is created, it is then AES encrypted with the user’s password.
Since every REST call to the web service must provide a valid username and password
that matches an existing virtual user, the security file provides a way to verify this informa-
tion. Upon receiving a call, the web service opens up the specified user’s security file and
decrypts it with the provided password. If the password is incorrect, then the decryption
will fail and the username from the decrypted file will not match the user’s actual user-
name. If the password is correct, then the usernames will match, and the decrypted file
will also show if the virtual user has admin permissions. Admin permissions are necessary
for performing tasks like creating or deleting virtual users, changing a user’s password, or
upgrading a web service to a newer version.

A virtual user structure is great for an educational or learning environment, such as with
only a single user, or a classroom of students. However, when users start running more
sophisticated applications, security becomes an issue, and a virtual user structure is no
longer the answer. The virtual user structure is designed to be secure when users launch
prebuilt parallel programs that we provide. Yet, when a user launches their own source
code on a cluster, it is conceivable that their program could access the entire virtual user
directory structure. At this point using Unix user accounts on the cluster is the proper
solution as it provides the file system permissions of real Unix user accounts.

8

5.2 Handling Multiple Users
Just as described in the design, the web service must be able to handle multiple connecting
users at the same time. One benefit of the CherryPy framework is that it already handles
multiple users with multithreading. When the web service receives data through a REST
call, it automatically creates a copy of itself, as a new thread, and then pushes the REST
call to this new thread. This way when five users all call the web service at the same time,
the web service will create five new threads, one to handle each request.

We get a single level of concurrency automatically with CherryPy’s threading to handle
multiple users; however, we’ve implemented a second level of concurrency within the web
service as well. The web service creates a new process when it handles computationally
significant tasks, such as launching a job. A job launch can take some time as it may involve
building an executable and generating a batch script; thus, a separate process is created to
fulfill the request so it can run in parallel with the web service. Once the job is launched,
the process exits and the user is notified that the job has been launched. Users can then
query the web service for the status of the job through the web interface.

5.3 Launching a Job
When a web service receives a REST call to launch a job, a variety of information must be
included with the call such as authentication information; project files; and various build
and launch settings. Once called, the web service begins by verifying the provided user-
name and password, using the security steps provided earlier. If authentication fails, then
the call is instantly dropped and returned to the user with an error message. If authentica-
tion succeeds, then we create a second process, and redirect the launch settings and files to
this new process. From here the web service thread can return to the web interface, while
our second process handles the launch request. If the user did not submit their own Make-
file, then the new process will begin by creating a default Makefile for them. A launch
script (shell script) will then be created using the launch settings that the user provided.
Once the launch script is complete, the source code will be built using the Makefile, and
the job will be submitted to the job queue.

The web service actually has two primary functions that it must be able to complete, and
launching a job is only half the story. A web service must also be able to send data, in-
cluding job results and cluster information, back to the web interface. The main difference
between launching a job and querying the status of a job is that the web service does not
need a second level of concurrency. With or without a new process, the web service must
wait until all data has been collected before it can return the requested information to the
user.

At the moment we have only tested launching jobs on a Rocks [8] cluster running the Sun
Grid Engine batch-queuing system. Despite this, the web service has been designed to be
platform independent and handle multiple system software configurations. A few of the

9

upcoming systems available in the department we will be targeting are: LittleFe which
PBS/Torque [11] for job scheduling and resource management respectively, and another
cluster that uses SLURM [9] for scheduling and resource management. Once this work is
complete, the web service software should be compatible with nearly all commonly used
cluster software configurations.

5.4 The Web Interface
The web interface is built with three languages that are commonly found together: HTML5,
CSS3, and JavaScript. Together these languages have a huge support base online, they
make implementing the web interface extremely simple, and there are plenty of open source
libraries and frameworks available for all of these languages. HTML5 and CSS3 are both
used for the layout and design of the interface; whereas, JavaScript provides the backend
functionality for the interface, and allows us to make REST calls directly to the web service.

5.5 Cluster Connections
The web interface has been designed so that a single user can connect to a variety of clus-
ters at the same time. Every time a user wants to interact with a cluster, a few things are
needed to send the REST call to the web service: the cluster’s URL, as well as a username
and password for a virtual user on the cluster. Rather than forcing users to enter this infor-
mation in every time they communicate with a cluster, users can save this information by
adding a ’connection’ to their cluster, as shown in figure 7. Additionally, users can save
multiple connections, each of which are stored as a session using HTML5’s Web Storage
[6]. Once a connection has been saved, a user can effortlessly select which connection
(cluster) they would like to use when launching a job or viewing results.

Figure 7: Multiple connections displayed within the interface.

5.6 User Modes
A major highlight of the On Ramp to Parallel Computing project is that it aims to make
parallel computing easier, and we make this possible through multiple levels of launching

10

capabilities, called user modes, with corresponding documentation and options. Launching
a parallel program should be no more difficult for a brand new user as it is for someone with
years of parallel computing experience. To prove this, we built three different user modes,
each for varying levels of parallel computing experience. The first mode, allows novice
users to launch prebuilt applications with a few launch options that allows for exploration
of parallelism without having to deal with all of the details of batch schedulers, resource
managers and parallel programming libraries. Users brand new to parallel computing will
find this mode to be the most comfortable. Figure 8 shows how simple launching a prebuilt
project is. The prebuilt applications have been adapted from the CSERD [10]. They include
educational materials and all necessary source code to run them. As the project progresses,
we plan to include even more projects from the CSERD.

Figure 8: Launching a prebuilt project can be done with just a few steps. First select a
prebuilt project and an available connection (parallel computer). Next give the project a
name, enter in how many processors the job should use and click Launch.

Once a user requests to launch a prebuilt project on a cluster, the web service will begin by
copying the prebuilt project into the virtual user’s directory. No source code or Makefiles
are needed from the user to run them, making these applications perfect for new users to
explore parallelism. From here the project and source code will be built and then subse-
quently launched. Overall prebuilt projects are a non-scary introduction into launching jobs
that provide real results back within seconds.

The next user mode is for intermediate users who have some experience in parallel com-
puting. In this mode, the web interface allows users to upload their own project files and
source code. In addition, the intermediate mode provides significantly more launch set-
tings, so that users can begin to experience how various settings affect a launched job.
Users also have the choice between using the web service’s default Makefile, or upload-
ing their own Makefile. When users select to upload their own Makefile, we provide an

11

embedded code editor in the web interface using a JavaScript library, Ace [1]. Using an
embedded code editor allows us to provide a default Makefile which works with all of the
prebuilt projects, and provides users with a starting point when uploading their own Make-
file. If users have no experience using a Makefile, the embedded code editor allows them
to learn from and make modifications to a working generic Makefile. Figure 9 shows this
embedded code editor in action.

Figure 9: Embedded code editor with the default Makefile.

Although not yet implemented, the last mode will be for advanced users. Users who are
comfortable with parallel computing will find this stage to be the most robust and helpful.
The first benefit of this mode is that all launch and build settings will be available. Further-
more, it will provide users the option to upload and edit their own launch script. This will
again be implemented through an embedded code editor with a default or generic launch
script to give users a place to start from.

5.7 Viewing Results
After a user has launched a job, they can view the job’s results and output directly within
the web interface. Viewing results is designed to be as simple as one click. Once a user
has navigated to the results page within the interface, they can select an active connection
to view the results for the specified virtual user on a cluster. When a connection has been
selected the web interface will send a REST call to the web service, requesting all of the
user’s launch results. Once the web interface receives the results, we will display them to
the user as shown in figure 10.

6 Conclusions
The prototype implementation described in this paper demonstrates an exciting start to this
project. It proves that it is possible to build such a web interface to make parallel comput-
ing easier to use. The current design and implementation focuses on the main functionality
that is needed for the whole project to work, namely the remote launch capability.

12

Figure 10: Viewing job results within the web interface.

Now that the prototype is implemented, there are several areas for improvement, including:
finishing the implementation for the different user modes, including the documentation and
launch options; extend the web interface to be able to launch other prebuilt applications;
extending the web service tools to be able to run in different cluster environments includ-
ing those mentioned in section 5.3; and, finally testing the system in an educational setting.
In addition to these near-term goals, we also plan to implement more administrative and
cluster monitoring tools that will allow users and administrators to watch the usage of the
cluster as a whole.

Currently, this work has been funded by a small undergraduate research grant and we plan
to apply for external funding by the end of the year. With that funding, we are hoping to
attract new students to work on these features and more. We are also hoping to attract some
early adopters to test the system and provide feedback.

References
[1] Ace. http://ace.c9.io/.

[2] Aspen systems. https://www.aspsys.com/sectors-served/
higher-education.

[3] Cherrypy. http://www.cherrypy.org/.

[4] Code.org. code.org.

[5] Cray Supercomputers: Solutions for Higher Education. http://www.cray.
com/IndustrySolutions/HigherEducation.aspx.

[6] HTML5 Web Storage - W3Schools. http://www.w3schools.com/html/
html5_webstorage.asp.

[7] Penguin Computing. http://www.penguincomputing.com/solutions/
education.

13

http://ace.c9.io/
https://www.aspsys.com/sectors-served/higher-education
https://www.aspsys.com/sectors-served/higher-education
http://www.cherrypy.org/
code.org
http://www.cray.com/IndustrySolutions/HigherEducation.aspx
http://www.cray.com/IndustrySolutions/HigherEducation.aspx
http://www.w3schools.com/html/html5_webstorage.asp
http://www.w3schools.com/html/html5_webstorage.asp
http://www.penguincomputing.com/solutions/education
http://www.penguincomputing.com/solutions/education

[8] Rocks Open-Source Toolkit for Real and Virtual Clusters. http://www.
rocksclusters.org/wordpress/.

[9] Simple Linux Utility for Resource Management (SLURM). https://
computing.llnl.gov/linux/slurm/.

[10] The Computational Science Education Reference Desk (CSERD) - The Shodor Edu-
cation Foundation. http://shodor.org/refdesk/.

[11] TORQUE Resource Manager - Adaptive Computing. http://www.
adaptivecomputing.com/products/open-source/torque/.

[12] Wikipedia: “web service”. http://en.wikipedia.org/wiki/Web_
service.

[13] J. Adams and D. Vos. Small-college Supercomputing: Building a Beowulf Cluster at
a Comprehensive College. In Proceedings of the 33rd SIGCSE Technical Symposium
on Computer Science Education, SIGCSE ’02, pages 411–415, New York, NY, USA,
2002. ACM.

[14] S. J. Cox, J. T. Cox, R. P. Boardman, S. J. Johnston, M. Scott, and N. S. O’Brien.
Iridis-pi: a low-cost, compact demonstration cluster. Cluster Computing, pages 1–10,
2013.

[15] R. T. Fielding. Architectural styles and the design of network-based software archi-
tectures. PhD thesis, University of California, 2000.

[16] A. Fitz Gibbon, D. A. Joiner, H. Neeman, C. Peck, and S. Thompson. Teaching High
Performance Computing to Undergraduate Faculty and Undergraduate Students. In
Proceedings of the 2010 TeraGrid Conference, TG ’10, pages 7:1–7:7, New York,
NY, USA, 2010. ACM.

[17] C. Peck, T. Murphy, P. Gray, S. Thompson, J. Houchins, A. Weeden, A. F. Gibbon,
D. Joiner, I. Babic, M. Ludin, L. DeJong, K. Muterspaw, S. C-P, and I. Traxler. Little
Fe Project. http://littlefe.net/, March 2014.

[18] C. Peck, T. Murphy, S. Thompson, and A. Weeden. LittleFe Buildout Workshop
(Parts 1 & 2): Hardware, Software, and Curriculum for Parallel and Distributed Ed-
ucation. In Proceeding of the 44th ACM Technical Symposium on Computer Science
Education, SIGCSE ’13, pages 763–763, New York, NY, USA, 2013. ACM.

[19] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the
Condor experience. Concurrency - Practice and Experience, 17(2-4):323–356, 2005.

14

http://www.rocksclusters.org/wordpress/
http://www.rocksclusters.org/wordpress/
https://computing.llnl.gov/linux/slurm/
https://computing.llnl.gov/linux/slurm/
http://shodor.org/refdesk/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_service
http://littlefe.net/

	Introduction
	Related Work
	Requirements
	Design
	Web Service Design
	Web Server Design
	Web Interface Design

	Prototype Implementation
	Web Service
	Handling Multiple Users
	Launching a Job
	The Web Interface
	Cluster Connections
	User Modes
	Viewing Results

	Conclusions

