

Essential Android Technologies and Google Maps APIs for

Location-Based Services

Wen-Chen Hu

Department of Computer Science

University of North Dakota

Grand Forks, ND 58202

wenchen@cs.und.edu

 Naima Kaabouch

Department of Electrical

Engineering

University of North Dakota

Grand Forks, ND 58202

naima.kaabouch@engr.und.edu

Hung-Jen Yang

Department of Industrial

Technology Education

National Kaohsiung Normal

University

Kaohsiung City, Taiwan

hjyang@nknucc.nknu.edu.tw

Xiwei Wang

Department of Computer Science

University of North Dakota

Grand Forks, ND 58202

xiwei.wang2012@gmail.com

Abstract

A location-based service (LBS) is a service based on the geographical positions of mobile

handheld devices such as smartphones or tablet computers. Though location-based

services are popular and useful, most developers are not familiar with its development

because it is complicated and difficult. It is especially difficult to draw driving/walking

routes on device emulator maps. This article tries to help LBS developers by introducing

the construction of a simple LBS application focusing on route drawing step-by-step.

Two primary technologies are used in this construction: (i) Android platform, the most

popular mobile platform, and (ii) Google Maps APIs, the most popular map APIs. LBS

developers quickly learn how to build an LBS application with routes by studying this

article.

1

1 Introduction

A location-based service is a service based on the geographical position of a mobile

handheld device. LBS are extremely popular these days; e.g., one of the LBS examples

is to find a nearby ethnic restaurant by using a smartphone. The future of LBS is bright

according to the following observations:

 The number of location-based service users worldwide would reach to almost 800

million by the end of 2012 according to Gartner (2012), which also forecasted the
revenue generated by consumer location-based services would reach $13.5 billion
in 2015, of which advertising will be the dominant contributor.

 According to Research and Markets (2013), the global location-based services
market is forecasted to nearly triple over the eight years from 2013-2020, with a
cumulative CAGR (Compound Annual Growth Rate) of more than 12%.

 During the period 2011-2016, the CAGR for worldwide location-based learning
products and services is 26.3% based on a report from Ambient Insight, LLC
(2013), which also predicted revenues would rise from $212.38 million in 2011 to
$682.13 million by 2016.

Though location-based services are popular, most developers are not familiar with their

development because it is complicated and difficult. One of the advanced LBS features

is to provide driving/walking routes on device maps. Implementing this feature is

especially difficult because a complicated procedure of maps configuration is required.

This study tries to help LBS developers by building a simple LBS application using

Android and Google Maps APIs. Detailed design and implementation are described in

this article. IT workers could quickly join the LBS development after studying this

article.

The rest of this paper is organized as follows. Section 2 gives critical background

information for this research including (i) client-side handheld computing and (ii)

location-based services. The proposed LBS application is introduced in Section 3, which

includes three sub-sections: (i) the proposed system, (ii) the simple geographical database

used by the proposed system, and (iii) the Google Maps. Section 4 explains how to find

Google Maps Android API keys in order to use Google Maps. The configuration of

Android Google Maps applications is fairly complicated and is described step-by-step in

Section 5. The final section summarizes this study and gives possible LBS projects.

2 Background

This section introduces essential background information for this research including (i)

client-side handheld computing and (ii) location-based services.

2.1 Client-Side Handheld Computing

Client-side handheld computing is the programming for handheld devices and it does not

need the supports from server-side programs. Typical applications created by it include

2

(i) address books, (ii) video games, (iii) note pads, and (iv) to-do list. Various

environments/operating systems/languages are available for client-side handheld

programming. Table 1 lists the top-four mobile operating systems and their features

(Handheld Computing Research, 2014).

Mobile OS Android iOS Windows Phone BlackBerry OS

Company/Developer
Open Handheld

Alliance

Apple Microsoft RIM

3Q
2013

Market Share 1st (81.0%) 2nd (12.9%) 3rd (3.6%) 4th (1.7%)

Millions of Units
Shipped

211.6 33.8 9.5 4.5

3Q
2012

Market Share 1st (74.9%) 2nd (14.4%) 4th (2.0%) 3rd (4.1%)

Millions of Units
Shipped

139.9 26.9 3.7 7.7

Development Languages Java Objective C/C++ Visual C++ Java

Kernel Type Linux Hybrid Windows CE 6/7 Unix

IDEs, Libraries,
Frameworks

Android SDK; ADT

plug-in for Eclipse
iPhone SDK

Windows Phone

SDK (works with
Visual Studio)

BlackBerry JDE

Source Model Open
Closed (open for the

core)
Closed Closed

Initial Release 2008 2007 2010 1999

Latest Version as of
November 2013

4.4 KitKat 7.1 8 7.1

Mobile Application Store Google Play App Store

Windows Phone

Apps+Games Store

BlackBerry World

Table 1: Top-4 Mobile Operating Systems and Their Features.

They apply different approaches to accomplishing the development of mobile

applications. Figure 1 shows a generic development cycle applied by them. Handheld

emulators instead of the handhelds themselves are used for the development because of

the convenience reason.

http://www.openhandsetalliance.com/
http://www.openhandsetalliance.com/
http://www.apple.com/
http://www.microsoft.com/
http://www.rim.com/
https://play.google.com/store
http://www.apple.com/iphone/apps-for-iphone/
http://www.windowsphone.com/en-US/store
http://www.windowsphone.com/en-US/store
http://us.blackberry.com/apps/blackberry-world.html

3

Figure 1: A Generic Client-Side Handheld Computing Development Cycle.

2.2 Location-Based Services (LBS)

A location-based service is a service based on the geographical position of a mobile

handheld device (Kupper, 2005; Kolodziej & Hjelm, 2006). Two of the LBS examples

are (i) finding a nearby ethnic restaurants and (ii) locating a nearby store with the best

price of a product. A system structure of location-based services, shown in Figure 1,

includes five major components (Steiniger, Neun, & Edwardes, 2006):

(a) Mobile handheld devices, which are small computers that can be held in one hand.

For most cases, they are smartphones.

(b) Positioning system, which is a navigation satellite system that provides location

and time information to anyone with a receiver.

(c) Mobile and wireless networks, which relay the query and location information from

devices to service providers and send the results from the providers to devices.

(d) Service providers, which provide the location-based services.

(e) Geographical data providers, which are databases storing a huge amount of

geographical data such as information about restaurants and gas stations.

Figure 2: A System Structure of Generic Location-Based Services.

Checking

Program

synchronization

Yes

No

Mobile applications

design &

implementation

Mobile handheld

device emulator

Mobile handheld

device

Displayed

Satisfied

Mobile

developers

Queries

Results

End

users

4

3 The Proposed Location-Based Service (LBS)

An LBS usually requires the function of drawing walking/driving routes on maps.

However, it is never an easy function, especially using smartphone emulators. The main

objective of this article is to explain how to draw routes by using Android platform and

Google Maps APIs, so the proposed LBS application is made simple on purpose. This

section introduces the proposed system, the embedded geographical database using

SQLite, and Google Maps.

3.1 The Proposed System

The proposed location-based service is to find a closest meeting place for everyone.

There are several apps allowing users to schedule a meeting and the meeting place is

usually fixed. The proposed LBS is to find a meeting place that has the lowest sum of all

distances between the place and all attendees. The workflow of the proposed system is

shown in Figure 3 including four steps: (i) checking the meeting attendees, (ii) finding

the meeting place, (iii) receiving the user’s location via GPS (Global Positioning System)

or from a mock location, and (iv) drawing a route between the user location and the

meeting place.

Figure 3: The Workflow of the Proposed System.

Figure 4 shows four screenshots of the proposed LBS. The DDMS (Dalvik Debug

Monitor Server) of the Eclipse with Android plugin, instead of GPS, is used to send a

mock user location. The attendees are then checked. The LBS calculates the distance

between each place/landmark and attendee. The meeting place is decided based on the

lowest sum of all calculated distances. A route is drawn between the user and the

meeting place.

Receiving the

current location

Checking the

attendees

Finding the

meeting place

Drawing a

route

5

Sending a mock

user location

(a)

(b)

A route between

the user and the

meeting place

(c)

(d)

Figure 4: Screenshots of the Proposed LBS: (a) Sending a Mock User Location from the

DDMS, (b) the User Location Marked, (c) Checking the Attendees, and (d) a Route

between the User and the Meeting Place Drawn.

3.2 The Geographical Database

Geographical databases are usually provided by a third party such as GeoNames (n.d.).

SQLite (n.d.) is an open source embeddable relational database management system,

which is embedded within an application process without the overhead associated with a

client-server configuration. Embedded databases are lightweight because they require

little memory during run time and are written in compact code. SQLite includes the

following major features: (i) supporting most of the SQL-92 standard, (ii) running on all

major operating systems, (iii) having support for the major computer languages, and (iv)

including multitasked read operations and sequential writes. The SQLite structure (n.d.b)

consists of four components: (i) SQL Compiler, (ii) Core, (iii) Backend, and (iv)

accessories. It can store data up to two TB with each database saved in a single disk

using a B+ tree data structure. The SQL statements are compiled into assembly code

executed on the SQLite virtual machine, Virtual Database Engine (VDBE). This project

creates its own simple geographical database, GeoDB, as shown in Figure 5, which

includes two tables: (a) Users table and (b) Landmarks table.

6

UID Name
Location

Latitude Longitude

1
Poke

Mon
47.9252569 -97.032855

… … … …

n
Digi

Mon
48.2956123 -96.903403

LID Name
Location

Latitude Longitude

1
Columbia

Mall
47.9252569 -97.032855

… … … …

m
University

Park
48.2956123 -96.903403

(a)

(b)

Figure 5: Geographical Database, GeoDB, Used in This Project Including (a) Users

Table and (b) Landmarks Table.

The Users table stores the potential meeting attendees and is created by using the

following SQL (Structured Query Language) command:

sqlite> CREATE TABLE Users (

 > UID INTEGER PRIMARY KEY AUTOINCREMENT,

 > name TEXT,

 > latitude REAL,

 > longitude REAL);

Furthermore, the Landmarks table stores the potential meeting places such as malls and

parks and can be created by a similar command. There are several web pages available

for finding the latitude and longitude of a location such as iTouchMap.com at

http://itouchmap.com/latlong.html . Users can use the following SQL command to enter

user data:

mysql> INSERT INTO Users (UID, name, latitude, longitude)

 > VALUES (NULL, 'Poke Mon', 47.9252569, -97.032855);

If an attendee moves, his/her location can be updated by the following SQL command:

mysql> UPDATE Users SET latitude=lat, longitude=long,

 > WHERE PID=id;

where lat and long are the new latitude and longitude and id is the user id.

3.3 Google Maps

The Android platform provides tight integration between Android applications and

Google Maps. Both Android and Google Maps Android API are updated constantly and

the backward compatibility is always a problem. Creating a new Android application that

uses the Google Maps Android API v2 requires several steps as follows (Google, n.d.):

7

1. Obtain a Google API key. To access the Google Maps servers with the Maps

API, a Maps API key is needed. To do this, the developer will need to register a

project in the Google APIs Console, and get a signing certificate for your app.

2. Download and configure the Google Play Services SDK. The Google Maps

Android API is distributed as part of this SDK. With Google Play Services, apps

can take advantage of the latest, Google-powered features such as Maps,

Google+, and more.

3. Specify settings in the Application Manifest. For example, the settings include

permissions that give the application access to Android system features and to the

Google Maps servers.

4. Add a map to a new or existing Android project. The maps could also include

many features such as captions, markers, and routes.

5. Publish the application. The final application is uploaded to devices or the

Internet such as Google Play for public to use.

4 Google Maps Android API Keys

A Google Maps Android API key is required in order to use the Google Maps in an

Android device. To obtain a key, the following three steps are taken: (i) finding an SHA-

1 fingerprint, (ii) creating a Google API project, and (iii) obtaining a Google API key

(Google, n.d.).

4.1 Finding an SHA-1 Fingerprint

A Google Maps Android API key is required to use the Google Maps API. If the

application’s API usage exceeds the usage limits, the developers must load the API using

an API key in order to purchase additional quota. For example, (i) Service: JavaScript

Maps API v3 (not Android API), (ii) Usage limit (per day): 25,000, and (iii) 1,000 excess

map loads (in U.S. dollars): $0.50, and (i) Service: Street View Image API, (ii) Usage

limit (per day): 25,000, and (iii) 1,000 excess map loads (in U.S. dollars): $0.50. To

obtain a Google Maps Android API key, first, we have to calculate the SHA-1 fingerprint

of the certificate that we will use to sign the final application. This fingerprint will have

to be provided to the Google Maps API service so that it can associate the key with your

application. The SHA-1 fingerprint is a unique text string generated from the commonly-

used SHA-1 hashing algorithm. Because the fingerprint is itself unique, Google Maps

uses it as a way to identify your application. Java’s “Key and Certificate Management”

tool named keytool is used for the fingerprint generation as follows:

1. Run jarsigner.exe. For example, go to the directory “C:\"Program Files

(x86)"\Java\jdk1.6.0_26\bin\” and doubly click the icon of jarsigner.exe.

2. Locate debug.keystore. For example, it is in the directory:

“C:\Users\userid\.android\”.

3. Run keytool. For example, open a Windows command-prompt by selecting the

following Windows options:

8

Start ⇒ All Programs ⇒ Accessories ⇒ Command Prompt

go to the directory “C:\"Program Files (x86)"\Java\jdk1.6.0_26\bin\” and execute

the following command to find an SHA-1 fingerprint:

 > keytool -list -v -keystore "C:\Users\userid\.android\debug.keystore"

It will ask for the keystore password, which is “android” in my case. Figure 6

shows a screenshot of executing the above commands and finding an SHA-1

fingerprint.

Figure 6: A Screenshot Showing Finding an SHA-1 Fingerprint.

4.2 Creating a Google API Project

Once an SHA-1 fingerprint is received, create or modify a project for the application in

the Google APIs Console and register for the Maps API:

1. Navigate to the Google APIs Console. Create a project that you use to track your

usage of the Google Maps Android API.

2. Select Services from the left navigation bar. To the right of the Google Maps

Android API v2, click the switch indicator so that it is on. Figure 7 shows the

screenshot showing all services provided by Google.

Figure 7: A Screenshot Showing all Services Provided by Google.

9

4.3 Obtaining a Google API Key

If the application is registered with the Google Maps Android API v2 service, then the

developers can request an API key. For Android developers, the key should be added to

the application’s manifest file AndroidManifest.xml. To obtain the key, take the

following five steps (Google, n.d.): (i) navigate to the project in the Google APIs

Console, (ii) in the left navigation bar, click “API Access,” (iii) in the resulting page,

click “Create New Android Key... ,” (iv) in the resulting dialog, enter the SHA-1

fingerprint, then a semicolon, then the application’s package name, and (v) the Google

APIs Console responds by displaying “Key for Android apps (with certificates)”

followed by a forty-character API key. Save this key value and put it in the

AndroidManifest.xml file. Figure 8 shows a found Google API key.

Figure 8: A Screenshot Showing a Google API Key Found.

5 Android Google Maps Application Configuration

Android Maps applications are closely related to Google Play services, which are very

sensitive to specific versions. If the tool versions are not compatible, the app would not

work. This application will use (i) Android 4.2.2 (API 17) [Android 4.4 (API 19) is the

latest version as of March 2014] and (ii) Google Play Services 5 (the latest version is 13

as of March 2014), where the Android 4.2.2 (API 17) is a most trustworthy version

because most demonstrations use it. In order to draw routes on Google maps on Android

emulators, the application must be configured correctly. This section gives detailed steps

of configuration (Hu, 2013a).

5.1 Downloading and Installing Android 4.2.2 (API 17)

To use Android 4.2.2 (API 17), select the following Eclipse options:

Window ⇒ Android SDK Manager

and install the Android 4.2.2 (API 17) as shown in Figure 9.

10

Figure 9: A Screenshot Showing the Android SDK Manager.

5.2 Creating an Android Application Using Android 4.2.2 (API 17)

To create an Android application, select the following Eclipse options:

File ⇒ New ⇒ Android Application Projection

and fill out the parameters such as shown in Figure 10.

Figure 10: A Screenshot Showing New Android Application.

5.3 Downloading and Installing the Google Play Services SDK

To use the latest Google Play Services, select the following Eclipse options:

Window ⇒ Android SDK Manager

and install the Google Play services as shown in Figure 11.

11

Figure 11: A Screenshot Showing the Android SDK Manager.

The Android Google Maps applications are supposed to work on real devices, instead of

Android emulators. In order to make them work on Android emulators, we need to install

the following two APKs (Android Application Packages) in the emulators: (i)

com.google.android.gms.apk (Geo Message Service) and (ii)

com.android.vending.apk. However, the problem is the two APKs must be

compatible with the latest, downloaded Google Play Services SDK, but the latest,

compatible APKs can not be found. Fortunately, there is one way around this problem by

downloading and installing compatible tools as follows: (i) Google Play services 5, (ii)

com.google.android.gms-3025110-v3.0.25 (583950-10).apk, and (iii)

com.android.vending-1.apk, which are working well with Android 4.2.2 (API 17).

5.4 Downloading and Installing the Google Play Services 5

Move the downloaded Google Play Services 13 to another place, and download and

install the Services 5 by taking the following steps:

1. Go to the directory where the Services 13 is located such as

 C:\android-sdk\adt-bundle-windows-x86_64-20130917\sdk\extras\google\

2. Change the name of the directory google_play_services to

google_play_services_13, for example.

3. Move the downloaded Google Play Services 5 to the directory with the name

google_play_services.

5.5 Importing the Google Play Services 5 to the Project

Point the mouse to the project, such as MapMarker, in the left navigator pane of the

Eclipse and right click the mouse:

Import ⇒ Android ⇒ Existing Android Code Into Workspace

Click the button Next. Enter the location of Google Play Services 5 such as

12

C:\android-sdk\adt-bundle-windows-x86_64-20130917\sdk\extras\google\

google_play_services\libproject\google-play-services_lib

(no line breaks), select google-play-services_lib, check “Copy projects into

workspace,” and click “Finish.” Other than the target project MapMarker, another

project google-play-services_lib will be created after clicking the Finish button

of the previous interface. You need to delete the generated project [but DON’T check

“Delete project contents on disk (cannot be undone)”] whenever you want to import it

again. When you build the target project, you also need to build the generated project.

That is using “Build All.” Figure 12 shows a screenshot of Google Play Services

imported.

Figure 12: A Screenshot Showing Google Play Services Imported.

5.6 Modifying the Project’s Properties

Point the mouse to the project, such as MapMarker, in the left navigator pane of the

Eclipse and right click the mouse:

Properties ⇒ Resource ⇒ Android

Check the “Android 4.2.2,” and add “google-play-services_lib,” and click the buttons

Apply and then OK.

13

Figure 13: A Screenshot Showing a Project’s Properties.

5.7 Creating an Emulator

Select the following Eclipse options:

Window ⇒ Android Virtual Device manager

Create one and only one device with the following features: (i) AVD Name: AVD1, (ii)

Device: 3.4” WQVGA (240 × 432: ldpi), and (iii) Target: Android 4.2.2 - API Level 17

as shown in Figure 14.

Figure 14: A Screenshot Showing Editing an Android Virtual Device.

5.8 Install the gms and vending APKs into the Emulator

This step requires executing the following operations as shown in Figure 15:

14

1. Start the emulator (and the only one emulator) and wait until it is done starting.

2. Start a Windows command-prompt and go to the directory where the ADB

(Android Debug Bridge) is located such as:

 C:\android-sdk\adt-bundle-windows-x86_64-20130917\sdk\platform-tools

Download the following two APKs to the directory: (i)

com.google.android.gms-3025110-v3.0.25 (583950-10).apk and (ii)

com.android.vending-1.apk. The download sites are constantly changing

and make sure they are safe.

3. Install the two APKs into the emulator by using the following commands:

 > adb -e install "com.google.android.gms-3025110-v3.0.25 (583950-10).apk"

 > adb -e install "com.android.vending-1.apk"

4. Restart the AVD.

Figure 15: A Screenshot Showing Installing APKs into Emulator.

Once the application is successfully configurated, the developers can start drawing the

routes or marking locations on Google maps by referring to the code available online

such as Hu (2013b). One of the result screenshots is shown in Figure 16 including

location markers and captions.

15

Figure 16: A Screenshot Showing Two Locations Marked.

6 Summary

Nowadays there are more smartphones and tablet computers than PCs and servers. The

omnipresence of smartphones and tablet computers makes location-based services like

Foursquare (n.d.) extremely popular. Many mobile users depend on LBS such as

navigation and recommendations to live their daily lives. The high interest in the LBS

has more developers try to join the LBS development. However, the LBS construction,

especially driving/walking route drawing, is usually complicated and difficult. This

article tries to help LBS developers by introducing a simple LBS construction. The

proposed LBS is made simple on purpose because this article focuses on the methods and

technologies used instead of the LBS itself. Two of the most complicated procedures, (i)

Google Maps Android API key generation and (ii) Android Google Maps application

configuration, are detailed. Readers may apply the knowledge and technologies learned

from this article to the following suggested applications:

 Find the interesting nearby places such as ethnic restaurants and movie theaters.

 Provide various recommendations such as concerts and museums including

driving/walking routes.

 Use social networks to connect people within a short distance.

 Location-based promotions and coupons such as sales and discounts.

Other than the LBS applications recommended, the following location-based research is

suggested:

 Detect any route anomalies. For example, an alert is generated if a pupil does not

follow his/her regular route to school.

 Find travel recommendations based on route trajectories. For example, most

people probably never heard the world’s largest truck stop at Walcott, Iowa. With

this feature, the drivers on the highway I-80 will be notified this interesting place

when they are near Walcott.

 Indoor positioning and navigation are used to help users have a better visiting

experience.

16

References

Ambient Insight, LLC. (2013). The Worldwide Mobile Location-based Learning Market:

2011-2016 Forecast and Analysis. Retrieved February 18, 2014, from

http://www.ambientinsight.com/Resources/Documents/AmbientInsight-2011-2016-

Worldwide-Location-based-Learning-Market-Overview.pdf

Foursquare. (n.d.). About Foursquare. Retrieved February 25, 2014, from

http://foursquare.com/about/

Gartner, Inc. (2012). Gartner Highlights Top Consumer Mobile Applications and

Services for Digital Marketing Leaders. Retrieved from December 4, 2013, from

http://www.gartner.com/newsroom/id/2194115

GeoNames. (n.d.). About GeoNames. Retrieved February 27, 2014, from

http://www.geonames.org/about.html

Google. (n.d.). Introduction to the Google Maps Android API v2: Getting Started.

Retrieved February 7, 2014, from

https://developers.google.com/maps/documentation/android/start

Handheld Computing Research. (2014). Worldwide: Smartphone Sales by Operating

System. Retrieved March 15, 2014, from

http://people.aero.und.edu/~wenchen/handheldresearch/facts/sos.html

Hu, W.-C. (2013a). Configuring an Android Google Maps Application. Retrieved

March 3, 2014, from http://people.aero.und.edu/~wenchen/course/515/week12/3.html

Hu, W.-C. (2013b). Drawing a Driving Route. Retrieved March 13, 2014, from

http://people.aero.und.edu/~wenchen/course/515/week13/

Kolodziej, K. & Hjelm, J. (2006). Local Positioning Systems: LBS Applications and

Services, CRC Taylor & Francis.

Kupper, A. (2005). Location-Based Services: Fundamentals and Operation. Wiley.

Research and Markets. (2013). Location-Based Services―Market and Technology

Outlook―2013-2020. Retrieved March 12, 2014, from

http://www.researchandmarkets.com/research/rv7rqz/location_based

SQLite. (n.d.). About SQLite. Retrieved from March 5, 2012, from

http://www.sqlite.org/about.html

Steiniger, S., Neun, M., & Edwardes, A. (2006). Foundations of Location-Based

Services. Retrieved December 13, 2013, from

http://www.spatial.cs.umn.edu/Courses/Fall11/8715/papers/IM7_steiniger.pdf

