
A Visualization Program for Subset Sum Instances

Thomas E. O’Neil and Abhilasha Bhatia
Computer Science Department

University of North Dakota
Grand Forks, ND 58202

oneil@cs.und.edu
abhilasha.bhatia@my.und.edu

Abstract
This paper describes a program called SumFinder that is designed to support experimenta-
tion with instances of the Subset Sum problem. Subset Sum is perhaps the simplest of the
NP-complete problems. It can be defined as follows: given a set of positive integers S and
a target sum t, is there a subset of S whose sum is t? The SumFinder program provides
the ability to generate random sets of integers as problem instances given a set size n and
a maximum value m. Editing operations are also provided to allow the user to create any
specific set. The program automatically generates all sums for subsets of the input set S,
and for each sum t in the sum set, the program will display all subsets that have sum t. In
addition to the processing of individual input sets, the program provides the ability to test
all sets with given values of n and m to determine whether there are ranges of sums that
are always generated.

SumFinder has value for both instruction and research. It can be used as an instructional
tool for introducing a simple NP-Complete problem. Experimentation with SumFinder
makes the combinatorial nature of the Subset Sum problem immediately evident. It also
provides a thinking exercise that requires multiple levels of abstraction, including numbers,
sets of numbers, sets of subsets of a set of numbers, and the set of sums of subsets of a set
of numbers. As a research tool, SumFinder is being used in an on-going study of the
conjecture that Subset Sum has a specific density-based decision threshold. It appears that
if the density of an input set is high enough, a subset can be found for any non-peripheral
target sum. Specifically, if n ≥ m/2 + 2, there is a subset for any sum t such that m <
t < sum(S) − t. There is substantial empirical evidence in support of this conjecture,
but the proof remains open. The SumFinder program is being used to search for additional
properties of the sum sets that would lead to a proof of the conjecture.

1 Introduction
Subset Sum is one of the simplest NP-complete problems. It can be defined as follows:
given a set of positive integers and a target value, determine whether some subset has a
sum equal to the target. SumFinder is a Java program that solves single instances of the
Subset Sum problem. An instance is just a set of positive integers, which can be entered
directly by the user or produced by a random instance generator. The program is designed
to illustrate the entire range of subsets and subset sums. Given an instance of the problem,
it shows which sums can and cannot be found. And for each sum that can be produced, the
program shows the list of all subsets that produce it.

As an instructional tool, SumFinder is valuable for illustration of a combinatorial problem.
Small problem instances are seen to be easily manageable, but the number of subsets asso-
ciated with each sum escalates rapidly as the problem instances grow larger. The program
requires the user to conceptualize both sets of numbers and sets of sets of numbers. The
initial problem instance is just a set of numbers. The program generates the sum set of the
input set – the set of all sums of subsets of the input set. While the logic of the program
is based on computation of all possible sums rather than all possible subsets, it effectively
computes the power set of the input. Each sum is associated with a subset of the power set.
Using the program becomes an exercise in thinking at multiple levels of abstraction.

As a research tool, SumFinder can be used to search for and test properties of the sum sets
of Subset Sum instances. The space of problem instances can be parametrized using the
size of the input set n and the maximum number in the input set m. The density of an
instance is the ratio n/m. The time complexity of Subset Sum is very sensitive to the den-
sity of the input set. The critical region of the problem space, where instances have about
a 50% chance of being solvable, is found at the very low density of about n/2n [6]. So
the instances that are most difficult to solve are relatively small sets of very large numbers.
While all known exact algorithms require exponential time for such low-density instances,
a few algorithms have been defined that operate in expected polynomial time for medium
and high density instances [3, 4]. For very dense instances, Subset Sum decision can be
trivial. There is a density threshold beyond which the decision is always true for central
target sums. An approximation of this threshold is given in [1], and an exact threshold is
specified as a conjecture in [7]. Proof of the exact threshold apparently remains an open
problem, and the SumFinder program provides a tool for discovery of properties of sum
sets that might lead to a proof of the threshold conjecture.

This paper gives a description of the SumFinder program and discusses how it has been
used to test properties of sum sets. Section 2 below describes the software and Section 3
illustrates its use as a research tool.

1

Figure 1: An experiment with 10 numbers between 1 and 20.

2 The SumFinder Program
Figure 1 shows the SumFinder output for a randomly generated set of 10 numbers between
1 and 20. The text boxes and Create button across the top of the application frame allow
the user to create a random input set. Boxes are provided for the minimum value in the set
(Min), the maximum value (Max), and the size of the set (List Length). The Create button
generates a random set using the values of these parameters as entered by the user. There-
after it initiates the checkSums() method, which is applied on the generated list to find the
sums of all possible subsets.

The program uses Java’s Random class to generate the set of numbers. Code for the input
set generator is shown in Figure 2. The logic simulates selection without replacement by
skipping duplicates. If the set size is more than half of the maximum value, a set is cre-
ated by randomly generating its complement. This ensures that the random generator never
needs to produce more than half the numbers in the range {1, . . . ,m}, thus preventing de-
lays that might result from recurring duplications while generating very dense sets.

Once an input set has been generated, it is displayed in the leftmost list box. The sum of
the entire set is shown in a text box just below the list box of the application frame. The
utility buttons Add and Delete allow users to add elements to the list and remove elements
from the list respectively. The addition and removal operations also update the Max and
List Length fields if necessary. The Reset button generates a list that consists of all ele-
ments between the Min and Max values. These features allow the user to manually create

2

public OrderedIntSet makeIntSet(int size, int max)
{

int count = 0;
boolean [] map = new boolean [max]; //false by default
boolean complement = false;
Random randgen = new Random();
if (max < size)

return null;
else if (size > max/2)
{

size = max - size;
complement = true;

}
while (count < size)
{

int next = randgen.nextInt(max);
if (map[next] == false)
{

map[next] = true;
count++;

}
}
OrderedIntSet setlist = new OrderedIntSet();
for (int i=0; i<max; i++)

if (complement && !map[i] || !complement && map[i])
setlist.add(i+1);

return setlist;
}

Figure 2: A random integer set generator

or modify an input set. A visual representation of a bit map of the input set is displayed in
the bar across the top panel. Dark shaded areas (green) in the bar represent numbers that
are present, while light shaded areas (yellow) indicate missing numbers.

For an input set that has been manually entered or modified, its sum set is displayed when
the Sums button is pushed. Two list boxes are used to display the sums. If some subset of
the input set will produce a sum, the sum is displayed in the right box. If no subset can
produce a sum, it is listed in the left box. Shading is used in the sum boxes to distinguish
peripheral sums from central sums. For an input set S with maximum m, the central sums
are those greater than m and less than the sum of S minus m. Central sums are important
for the decision threshold conjecture, which is discussed further in the next section. A vi-
sual bit map for the sum set is displayed across the bottom panel of the application frame.
As with the input set, missing sums are shaded lighter. It is immediately apparent from the

3

visual bit map in Figure 1 that the sum set is symmetric. This illustrates a general property
of sum sets for all problem instances: if the input set S has a subset X with sum t, then
there is also a subset S −X whose sum is the sum of S minus t.

The logic for computing all subsets for each possible sum is an example of the dynamic
programming technique. The code for the computation of the sum set is shown in Figure 3.
There may be multiple distinct subsets (solutions) that add up to each sum, so the sum set
is an array (called sollist[]) of references to lists of solutions, where each solution is repre-
sented as a bit map of n bits. Initially, a bit map representing the empty set is appended to
sollist[0], and the solution lists for every other sum are left empty. The numbers from the
input set are processed one at a time from low to high. For each input number next, sollist[]
is traversed from high index to low. If sollist[i] is not empty, then for each solution on the
sollist[i] list, a new solution is created by adding next and the new solution is appended to
the sollist[i+next] list.

public SolutionSet [] findSums()
{

sollist[0] = new SolutionSet(0, numcount);
sollist[0].add(zeroString(numcount));
for (int i=1; i<=setsum; i++)

sollist[i] = new SolutionSet(i, numcount);
int topone = 0;
for (int j=0; j<numcount; j++)
{

int next = intset[j];
for (int i=topone;i>=0; i--)
{
if (sollist[i].setlist.size() > 0)
{
for (String smap: sollist[i].setlist)
{
StringBuilder newmap = new StringBuilder(smap);
newmap.setCharAt(j, ’1’);
sollist[i+next].add(newmap.toString());

}
}

}
topone = topone + next;

}
return sollist;

}

Figure 3: Computing the subsets for all sums via dynamic programming

4

The user can select any sum on the sum list and press the Maps button to see the bit maps
of the subsets that add up to that sum. Each bit map is a binary bit string representation
where positions of the 1-bits represent the elements of the subset. If position i in the bit
string is 1, then element i from the ordered list of set elements is in the subset. The user
can select any subset map and press the Set button to display the subset as a list of values
in the rightmost list box of the application frame. The sum of the subset is displayed below
the rightmost list box.

private String successor(String w, int onecount)
{ // Returns the successor of string w with the same

// length and the same number of ones. The onecount
// parameter is assumed to be the number of ones in w.
// Returns null if there is no such successor
// of the same length.

int n = w.length();
String suffix;
if (onecount == n || onecount == 0)

return null;
if (w.charAt(0) == ’0’)
{

suffix = successor(w.substring(1), onecount);
if (suffix != null)

return "0" + suffix;
else

return "1"+ zeroString(n-onecount) +
oneString(onecount-1);

}
else // w.charAt(0) == ’1’
{

suffix = successor(w.substring(1), onecount-1);
if (suffix != null)

return "1" + suffix;
else

return null;
}

}

Figure 4: Successor computation for bit strings with
(

m
n

)
ones

In addition to processing one problem instance at a time, SumFinder can perform an ex-
haustive enumeration of all instances with the specified values of n and m while checking
for some property of the sum set. The enumeration and testing continues until a problem
instance fails the property test, and the failed instance is displayed in the list boxes for

5

closer examination by the user. The bottom panel has two buttons that trigger an exhaus-
tive enumeration: the All sets button tests the sum set for missing central sums, and the Test
all button provides an additional enumeration that tests some property of interest to the
user. The property to be tested is specified by modifying the methods of the PropertyTester
class. To test a new property, it is therefore necessary to modify and recompile the code.

The property tests are discussed in more detail in the next section. The enumeration of
problem instances uses logic that generates bit strings. A string of m bits that has n ones
provides a bit map for a problem instance. Enumeration of all instances reduces to the prob-
lem of systematically generating all

(
m
n

)
strings of m bits with n ones. The logic employed

by SumFinder generates these strings in lexicographic order (as defined and illustrated in
[5], p. 17). The code for a recursive successor function for this ordering can be found in
Figure 4.

Finally, the bottom panel provides a Capture button takes the snapshot of the current state
of the interface. The snapshot is stored as an image file called jframe.jpg in the user’s cur-
rent directory. This makes it convenient to transfer the results of interesting experiments to
written reports.

3 Experimenting with SumFinder

The SumFinder program computes the sums of all subsets of its input set. All subsets are
stored in lists for potential display. As a result, the program has exponential time and space
requirements. On a desktop with two 3.0 GHz Pentium 4 processors and a 2.5 GiB main
memory, sets of more than 22 integers can cause Java OutOfMemory errors.

The experiment illustrated in Figure 1 creates a set of n = 10 numbers between 1 and
m = 20. The sum of the entire set is 104, and only 6 of the 104 possible subset sums are
missing. A sum t is defined to be central with respect to input set S if m < t < ΣS −m,
where ΣS represents the sum of all elements in S. It is interesting to note that there are no
missing central sums in the experiment of Figure 1. It is conjectured in [7] that for any set
with n > m/2 + 1, there will be no missing central sums. The All sets button can be used
to test this conjecture for small values of n and m, and no counter-examples will emerge.
The proof of this conjecture, however, is apparently an open problem. A volunteer com-
puting project was undertaken at the University of North Dakota to extend the search for
a counter-example [2], and to date, all sets with n < 49 have been tested, and no counter-
example has been found.

While empirical evidence in favor of the conjecture is strong, the proof has been elusive.
The SumFinder program is intended to reveal properties of sum sets that will lead to a proof
of the conjecture. The research literature contains a theorem that estimates the probability
of finding the innermost sums in the central region based on the density of the input set [1],
but the theorem is not strong enough to cover the entire central region. The width of the

6

Maximum value m Instance size n Instances with missing central sums
8 5 3
9 5 21

10 6 2
11 6 29
12 7 2
13 7 28
14 8 2
15 8 35
16 9 2
17 9 43
18 10 2
19 10 57
20 11 2
21 11 72
22 12 2
23 13 94

Figure 5: Counting sets with missing central sums

central cluster of sums from the theorem is only 2m log m, whereas the width of the entire
central region in the threshold conjecture is Θ(m2).

It is informative to examine sets with density just below the threshold that have missing
central sums. If we try all sets with n = 11 and m = 20, for example, we find that there
are 2 sets with missing central sums. The number of sets with missing central sums for
8 ≤ m ≤ 22 and n = m/2+1 is shown in the table of Figure 5. It is interesting to note that
if m is even, the number of sets that fail the test is constant at 2, while the number of sets
that fail for odd values of m is apparently an increasing function of n or m (or both). It is
also interesting that for even values of m, the sets that fail are always {1, n, n + 1, . . . ,m}
and {1, 2, n + 1, n + 2, . . . ,m}. We also see that the target sums for which these sets fail
are very close to the edges of the central region.

The threshold conjecture implies that for any set with density higher than the threshold,
we can swap a number in the set with a number not in the set (provided both are within
{1, . . . ,m}) and still find a subset for every central sum. This raises the question of redun-
dancy in the solution sets for a given central sum t. Is it possible that every subset with
sum t must contain some value x, or will we always find at least one subset with and one
without x? Let ΓS(t) denote the solution set for a given target sum. ΓS(t) is defined to be
the collection of subsets of S that have sum t. We define the depth of ΓS(t) to be the size
of the smallest set cover for the collection. ΓS(t) is redundant if it has depth greater than 1.
We can use the testing capability of SumFinder to test for redundancy. The Test all button
on the bottom panel of the application frame will trigger an exhaustive enumeration of sets
with the specified size and maximum value. For each such problem instance, the program
will test for some property of the sum set (other than missing central sums), as coded by

7

the user. Figure 6 shows the results of a test for redundancy on a set of 10 numbers with
maximum value 16. This set exceeds the density threshold, so there is a non-empty solution
set for every central sum. The redundancy test shows, however, that the solution sets are
not all redundant. The solution sets ΓS(t) for nine values of t between 87 and 98 failed
the test. Examination of the solution set for t = 89 reveals that every subset with sum 89
contains the number 13, constituting a set cover of size 1. Removal of 13 from the input set
S would obviously induce missing central sums for a set S ′ just below the density threshold.

Figure 6: Testing sum sets for redundancy

While the existence of non-redundant solution sets for instances on the density threshold
was predictable, the SumFinder program also shows that the non-redundant sets are all
close to the end of the central region. This raises the possibility that the depth of ΓS(t) is
related to the distance of t from the edge of the central region. We could define the rank
of a sum to be a measure of its distance from the edges of the central region and devise
additional property tests for SumFinder to test a new and stronger conjecture about the
decision threshold. The redundancy test illustrates the value of SumFinder as a research
tool, and it is clear that there are many more experiments to be designed in exploration of
the Subset Sum problem.

4 Conclusion
The SumFinder program provides a useful tool for both instruction and research. As an in-
structional tool, it can be used to introduce a simple NP-complete problem, giving students

8

a concrete experience in dealing with combinatorial explosion. It can also be used to make
students aware that computer science is indeed a science. We still know very little about the
properties of computational problems, even for well-known classic problems in computing
such as Subset Sum. We can discover new phenomena in the computational universe by
conducting experiments in virtual laboratories. And we gain highly relevant and valuable
software development skills in building the research tools, such as SumFinder, that provide
those virtual laboratories.

References
[1] M. Chaimovich, G. Freiman, and Z. Galil, Solving Dense Subset-Sum Problems by

Using Analytical Number Theory, Journal of Complexity 5 (Academic Press, 1989),
pp. 271-282.

[2] T. Desell and T. O’Neil, SubsetSum@Home Project, URL volunteer.cs.und.edu/sub-
set sum, University of North Dakota (2012).

[3] A. Flaxman and B. Przydatek, Solving Medium-Density Subset Sum Problems in
Expected Polynomial Time, Lecture Notes in Computer Science 3404, (2005) pp.
305-314.

[4] Z. Galil and O. Margalit, An Almost linear-time Algorithm for the Dense Subset-Sum
Problem, SIAM Journal on Computing 20:6 (1991), pp. 1157-1189.

[5] D. Knuth, The Art of Computer Programming, volume 4, fascicle 3, (Addison-Wesley,
2005).

[6] S. Mertens, The Easiest Hard Problem: Number Partitioning, Inst. f. Theor. Physik,
University of Magdeburg, Magdeburg, Germany (2003).

[7] T. E. O’Neil, On Clustering in the Subset Sum Problem, Proceedings of the 44th
Midwest Instruction and Computing Symposium (Duluth, MN, 2011).

9

