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Abstract

With the vast increase in our access to data, there is a benefit to being able to ana-
lyze, model, and understand this data. The University of Minnesota - Morris (UMM)
has two wind turbines on campus that generate 60% of electricity for the campus in
order to strive toward energy sustainability. Due to this desire for sustainability, there
has been a significant increase in data gathering on wind turbine production and cam-
pus energy usage. UMM hopes to use this data to better understand energy usage and
production trends.

One way to try to better understand this data is to apply machine learning tech-
niques, such as Neural Networks, decision trees, and Bayesian techniques, in order
to create models that can help to explore relationships in the data. Machine learning
entails creating models that can learn from past experiences to accurately classify or
predict future situations. We have gathered large amounts of data related to energy
production from various UMM campus sources. With this data, we plan to create
models that are able to predict future wind turbine energy production using past pro-
duction patterns and weather data. If the models are sufficiently accurate, these models
could help the campus to understand energy usage and production trends. For exam-
ple, members of the campus community could choose to schedule activities that con-
sume large amounts of electricity on days when the wind turbines are producing large
amounts of power. This could include small jobs like student laundry, or larger jobs
related to campus heating. UMM would also be able to use the relationships found in
the models to help better understand why the campus produces or uses large amounts
of energy in hopes of improving energy production and conservation strategies.

1 Introduction

With topics such as global warming being discussed constantly, it has become increasingly
clear that energy usage and production are extremely pertinent issues. Many companies and
academic institutions alike have attempted to improve energy efficiency. There are many
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approaches to this problem including researching new energy solutions, improving storage
of energy, and even optimizing energy usage. One important challenge is the prediction of
energy production.

Understanding and being able to predict energy production from various energy sources
would lead to a deeper understanding of energy conservation. Certain fields, such as Ar-
tificial Intelligence, have attempted to use data-oriented approaches to try to build models
and systems that can predict energy production. In the paper, “Short term wind power
forecasting using time series neural networks” by Mohammadsaleh Zakerinia and Seyed
Farid Ghaderi, the authors explain how they used neural networks, a form of artificial in-
telligence, to predict wind power generation over hour intervals [6]. They were able to use
large amounts of data to build predictive models.

The University of Minnesota - Morris is working to increase green, sustainable energy.
This comes in the form of studying and using wind and solar energy. The wind energy at
Morris is produced using two wind turbines situated on a close, off-campus location. In
an effort to predict energy production from the wind turbines, we have applied Machine
Learning techniques to the historical energy production data in order to build a series of
predictive models. The goal would be to use data gathered from the wind turbines along
with weather data collected from Morris weather stations to create a model that the Univer-
sity of Minnesota - Morris can use to help predict future energy production.

In this paper, we will discuss necessary Machine Learning background in Section 2. In
Section 3, we will discuss the specific algorithms and experimental setup necessary for
creating the models. We will then discuss the results of building the models in Section 4.
Lastly, we will discuss future projects to use and manipulate the models in Section 5.

2 Machine Learning

The goal of our study is to create models that have predictive capabilities. This process
entails using large amounts of data to train the model to make predictions regarding future
data inputs. In the context of our research project, we would supply training data, or data
that contains weather information along with associated energy production. These weather
variables include values such as wind speed and direction and the desired output, energy
production. Using this data, the model can be built by using a learning algorithm.

A learning algorithm takes in a set of training data, such as past weather and production
data, and outputs a model. This model can take in new predictor variables (e.g. weather data
for tomorrow) and predict an output for those values (e.g. energy production for tomorrow).
This entails having the learning algorithm use the past data to create rules or patterns which
can be used to analyze the data and hopefully generate an accurate output. In the energy
production data example, the learning algorithm might notice that wind speeds above 20
miles per hour relate to extremely high energy production. The learning algorithm then uses
these rules to create a model. This model uses the rules acquired during the learning process
to take in new input data and generate a predicted output. In the production example, using
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the rules it learned in the training phase, the model might see new data showing that wind
speed is suspected to be around 25 miles per hour. As such, the model would predict that
the energy production would be high for that instance.

There are a wide variety of different learning algorithms, each with their own properties and
settings. A key feature is the type of outputs an algorithm’s model is capable of producing.
Some can generate a numeric output, e.g., providing a direct prediction of the expected
Kilowatts (Kw) given the predicted weather. Other algorithms, however, are classifiers,
which instead output one of a finite set of categories (often called factors), such as “low
energy production”, “medium energy production”, or “high energy production”.

We used three different learning algorithms during our model building phase – Naı̈ve
Bayes, Decision Trees, and Neural Networks. Each of these algorithms decides on rules
in very different ways but each produces a model that can predict our desired output – en-
ergy production. We used each of these learning algorithms to produce a series of models
with the goal being to compare each algorithm’s results and accuracy for our problem as
well as to decide on which algorithm fits the needs of the project in the future. We built
these models using WEKA, a software suite developed to simplify the process of building
models using machine learning techniques [1].

2.1 Naı̈ve Bayes

Naı̈ve Bayes [5] is a learning algorithm that relies on the use of Bayes’ theorem to weight
each predictor variable’s effectiveness in predicting the output. However, it should be noted
that Naı̈ve Bayes is a classifier rather than a numeric predictor.

In the context of classification, Bayes’ theorem estimates the probability of a certain clas-
sification being the correct classification given the features’ or predictor variables’ values.
Bayes’ theorem for single predictor variables states that:

P (C|F ) =
P (C)P (F |C)

P (F )
(1)

In the above equation, P (C) is the probability of an output being classified as a specific
case C, independent of the predictor variables. P (F ) is the probability of a variable having
a specific value F . P (C|F ) is the probability of an output being a specific classification C
given the state of the variables F .

However, we will not only be working with one input variable. In order to take into account
multiple input variables Vi, we must modify Bayes’ theorem to the following:

P (C|F1 . . . Fn) =
P (C)P (F1 . . . Fn|C)

P (F1 . . . Fn)
(2)

In the above equation, P (F1 . . . Fn) represents the probability of Vi = Fi for all i. Lastly,
we need to introduce an independence assumption. This assumes that every input variable
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Windspeed > 20mph

Low Energy Production High Energy Production

Figure 1: An example tree with a single parent node and two terminal nodes

Fi’s chance of occurring is independent of every other variable Fj given a certain classifi-
cation. Using the independence assumption, we can reduce this formula to the following:

P (C|F1 . . . Fn) = KP (C)
n∏

i=1

P (Fi|C) (3)

In the above equation, we have K = 1/P (F1 . . . Fn). This equation allows us to use
multiple input variables to intelligently calculate the probability of those input variables
producing a certain classification.

Naı̈ve Bayes uses the modified Bayes’ theorem stated above in order to create learned
models for classifying instances of input variables. For each set of input variable samples
F1 . . . Fn, the chosen classification or output is the classification factor C that produces the
highest probability P (C|F1 . . . Fn) in the above equation.

2.2 Decision Trees

Decision trees are a class of algorithms that create tree-like structures which can be used to
classify new inputs. Like the Naı̈ve Bayes algorithm, decision trees provide a classification
as an output. The specific algorithm that was used in our experiment was called the C4.5
Tree learning algorithm [4]. In this algorithm, tree-like structures are created with two
different types of nodes. The first kind is a parent node which has a variable on which to
split input. The second kind is a terminal node which contains a classification.

In Figure 1, we see an example tree which will help explain the structure of decision trees.
The parent node, ”Windspeed > 20mph” checks if the wind speed of the input is greater
than 20 miles per hour. Connected to this parent node are two terminal nodes. The first
terminal node, ”Low Energy Production” is chosen if the wind speed is less than or equal to
20 mph. The second terminal node, ”High Energy Production” is chosen if the wind speed
is greater than 20 mph. Once a terminal node is reached, the algorithm classifies the input
as the value of the terminal node.

The C4.5 algorithm creates a tree by splitting based on entropy, or how much information
can be gained from a set of data. The algorithm will look through each predictor variable
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Input Nodes
Intermediate Nodes

Output Node
W1,1->2,1

W1,2->2,2

W1,1->2,2 W2,1->3,1

W2,2->3,1

Figure 2: An example neural network with three layers

and calculate the change in entropy that it would achieve by splitting on that variable. When
it finds a variable that has the highest change in entropy, it will split on that variable and
continue the process on each side of the split. It will also look for base cases that might be
fulfilled when deciding to split. One important base case that it will look for is when all
samples or an overwhelmingly high proportion of samples are of the same classification;
here it will create a terminal node with that classification instead of splitting.

2.3 Neural Networks

Artificial Neural Networks are inspired by the nervous systems found in animals and, as
such, have a connected neuron-like structure. This entails having neurons as individual
nodes with weighted connections [2].

In Figure 2, we see an example of a neural network. The first layer is the input layer; each
node in this layer represents a different input. The last layer is called the output layer as
these nodes will be the result of the model computation. Each intermediate and output
node’s values are calculated as follows:

x =
n∑

i=1

wiyi (4)

where x is the current node’s output value, yi is a previous node’s value, and wi is the
weight on the connection between a previous node and the current node.

In order to change the overall neural network to be more accurate, the weights are manip-
ulated to minimize the error of the final output node layer. For instance, if the final node
output is too high, the weights might be redistributed or edited so that the output node more
closely reflects the actual expected output.

The specific Neural Network implementation used in our study was the Multilayer Percep-
tron which uses back propagation to learn the appropriate weights [3]. We used this algo-
rithm due to the fact that it is one of the default neural network implementations on WEKA
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and that the output can be a real value rather than a classification. As such, the output of
a model created using the Multilayer Perceptron can reflect a numeric energy production
output rather than a classification like the Bayesian and Decision Tree algorithms.

3 Experimental Setup

In order to create the energy production models to be evaluated, decisions regarding data
sources, program setup, and learning algorithms needed to be made. This includes find-
ing reliable data sources for weather and production data, parsing that information into a
usable, meaningful format, and deciding between a set of learning algorithms to create an
optimal model.

The weather data source that we used was decided based on accessibility and reliability.
The data was gathered from the University of Minnesota - Morris campus weather station.
Weather conditions are recorded and stored reliably and are available for free online. From
this source, we used average wind speed (mph), high wind speed (mph), wind chill (F),
wind direction (cardinal), and temperature (F). However, there are nontrivial differences
in the environmental conditions between the wind turbine and the campus weather station.
We are using this data source but, when analyzing the resulting models, this issue should
be kept in mind.

Regarding the production data, the data source was Otter Tail Power Company, the power
company that handles the Morris campus energy needs. The data originating from the
power company’s records were both reliable and accurate. This data source gave us hourly
production in kilowatt-hour (kWH).

After acquiring the data, a major processing task was to parse it into a usable format. This
entailed converting the weather and production data sources into a set of comma-separated
value (CSV) file that matched each other in terms of dates and times. In order to maintain
consistency in dates, the year 2013 was used for both the weather and the production data
as that year was the most recent and representative year. However, given that the weather
data source and the production data source were gathering data on different intervals (15
minute intervals versus hour intervals), we parsed and averaged all gathered data for that
hour. This entailed calculating average wind speed, wind chill, temperatures, and wind
direction over an hour interval. Given that the wind direction variable was recorded on a
cardinal direction scale, the most common wind direction over an hour interval was used
as the average wind direction. The other variables were simple averages. Given that our
model building software suite, WEKA, allowed for CSV files to be used, we maintained a
CSV format for the data files during the entirety of the parsing process.

Another task that was necessary when parsing the data set was the factorization of the
production data set for classification purposes. This required us to find ranges in the pro-
duction data set and assign them to groupings. We decided to label these groupings as
”Very High”, ”High”, ”Medium”, and ”Low” production. The ranges for each factor are
described in Table 1.
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Table 1: Ranges on Production Factors

Data Set Low Production Medium Production High Production Very High Production
Power Company (kWH) 0-150.0 150.0-1123.5 1123.5-1882.7 1882.7-3263.4

For creating the models, we chose three learning algorithms, Naı̈ve Bayes, decision trees,
and neural networks, for many reasons. We chose Naı̈ve Bayes due to success with the
algorithm in past model-building initiatives. Decision trees were chosen due to their rel-
atively high accuracy and intuitive output with useful model result visualizations. This
algorithm would help us to build intuition as to the important features in our model build-
ing process. Lastly, we chose neural networks because they allowed us to predict power
generation on a numeric scale rather than performing classification.

4 Results

In order to understand the accuracy of the model’s ability to correctly predict output, one
needs to understand several accuracy metrics. These metrics include accuracy, correlation
coefficients, and confusion matrices. The accuracy is the percentage of all outputs that were
correctly classified. Accuracy is difficult to use alone as it does not take into account clas-
sifications that were close to the expected classification. For example, if the model outputs
“high energy production” and the expected output was “very high energy production”, we’d
consider it more accurate than if the expected output was “very low energy production.” As
such, we use a confusion matrix, or a matrix that counts occurrences of agreement and er-
rors between expected outputs and actual outputs. This matrix will help us to analyze how
inaccurate the model was. Correlation measures the relationship between two variables,
and is used for models that output a real number rather than a classification. In the context
of its use as a metric, it refers to the relationship between the expected output and the real
output.

4.1 Naı̈ve Bayes

The first learning algorithm that we used was the Naı̈ve Bayes algorithm. As previously
stated, Naı̈ve Bayes classifies output rather than providing a real numeric output. As such,
we will be evaluating the Naı̈ve Bayes model using the accuracy metric and a confusion
matrix.

This model had a somewhat low accuracy of 53.4%, implying that the model correctly
classified the sample data about half of the time. However, given that there were four
classification choices, it still did better than random chance. As such, it did learn some
patterns for predicting power output. Likewise, as seen in the confusion matrix in Table 2,
most misclassifications occurred close to the correct classification rather than far away. So
while these misclassifications were incorrect, they were close to being correct.
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a b c d <-Classified as
1486 121 398 68 a=Very High Production
500 129 658 179 b=High Production
266 145 1266 1003 c=Medium Production
13 12 499 1550 d=Low Production

Table 2: Confusion Matrix for Naı̈ve Bayes

4.2 Decision Trees

The second learning algorithm that was used to create our models was the C4.5 Decision
Tree algorithm. The C4.5 algorithm classifies output, like the Naı̈ve Bayes algorithm. We
will evaluate the C4.5 models using accuracy and a confusion matrix. Likewise, we can
analyze what the C4.5 model found to be the most important variables to split on.

When analyzing the model, we had similar results to that of the Naı̈ve Bayes model, with
an accuracy of 54.5%. When looking at the confusion matrix, it is clear that there were
issues classifying instances of high production as medium production. However, nearly
every other case was handled reasonably well with misclassifications occurring near the
correct classification.

a b c d <-Classified as
1563 206 252 52 a=Very High Production
524 312 501 129 b=High Production
299 361 1326 694 c=Medium Production
56 88 612 1318 d=Low Production

Table 3: Confusion Matrix for the Decision Tree

When analyzing the decision tree that is created, we can examine the variables the decision
tree split on in the initial splits. This allows us to understand which variables, when split,
produced the highest ability for pattern creation. We can look at the first three splits from
the decision tree in Figure 3. It seems that high wind speed and average wind speed had
the highest influence on the classifications of the model. The initial split was on High
Wind Speed being greater than 13.75 mph. Even in the second and third splits, we only see
Average Wind Speed and High Wind Speed being split on. This makes sense given that we
are predicting wind energy output.

4.3 Neural Networks

When analyzing the results of the neural network models, we cannot use the accuracy
metric and the confusion matrices. Instead, we are required to look at error and correlation
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High Wind Speed > 13.75 mph

Average Wind Speed > 1.75 mph High Wind Speed > 21.25 mph

Figure 3: The first three splits of the decision tree model

coefficients. This is due to the fact that neural networks produce a numeric result rather
than a classification.

The neural network model resulted in a correlation coefficient of 0.65, which implies that
the correlation is positive with a moderate strength. This means that the predicted output
and the expected output were moderately similar. However, the mean absolute error is
658.3. This implies that, for each prediction from the training data, the output was, on
average, 658.3 kWH away from the expected output. Given that production data ranged
from 0 to 3263.4 kWH, this error is fairly large and, as such, the model is not as accurate
as we’d like.

4.4 Discussion

Given the similar accuracy between models, the process for deciding the best model is dif-
ficult. The error on each of the models is relatively high and, as such, we cannot make the
decision based on performance alone. In fact, due to the fact that the model building project
is in its infancy, we feel as though choosing one model and learning algorithm above the
others would be a poor idea. Likewise, each of the models are able to provide us useful
information. For example, decision trees allow us to visualize the data in a meaningful
manner. This allows us to decide which variables are useful in predicting the power pro-
duction. The neural networks provide a numeric output which is useful for analyzing the
accuracy of the model and how we might change it in the future. As such, we have decided
to keep all of the models in the pool of potential candidates as none of the models have
proven to be reliable enough to use for decision-making purposes.

Lastly, we need to understand why the accuracy of the models are so low. On one hand,
we noticed that the confusion matrices implied that there were many times when the model
would choose a classification close to the expected output. This implies that accuracy
maybe isn’t the best metric for this project as accuracy does not take into account near-
misses. This would require further analysis in the future.

The other source of inaccuracies might be related to the unpredictability of the production
given our input variables. For example, in the decision tree, we noticed that average wind
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Figure 4: Analyzing Production and Wind Speed

speed and high wind speed tended to be the most common initial splits. We decided to
analyze average wind speed to decide if splitting on it is very helpful. In Figure 4, we
see the wind speed being plotted against the factors of the production. In this, we see that
there is a large amount of overlap between the wind speeds of each factor. While there is
usually an upward trend in the medians of wind speed as the production rises, the wind
speed variable itself seems to be a poor predictor for production when considered alone.
When considering that the models tend to value wind speed highly, it is understandable that
the accuracies are relatively low. It will be important to potentially reconsider the bounds
for each production factor or add more input variables in hopes of finding a more predictive
mixture of variables.

5 Future Work

We have a number of ideas regarding the future of the project which could be explored
further in an attempt to build more robust, reliable models. These ideas include enhancing
the models for the energy production predictability as well as performing similar prediction
analysis on campus energy consumption.

In regards to production predictability, there are many goals for future work relating to
enhancing the data gathered from our production source as well as ensuring that the mod-
els that were built during the research can be used effectively. Ensuring that these goals
are pursued is paramount to building effective models that would provide benefit to the
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University of Minnesota - Morris and energy researchers alike.

The first goal related to production predictability entails finding a reliable source of weather
data. As previously noted, the environmental setting of the weather station used for our
weather data differs from the setting of the wind turbines. As such, we would like to find a
weather data source that is as reliable as our current source, but also shares environmental
conditions similar to that of the wind turbines. One option is to purchase and deploy sensors
located near the wind turbines. This has the benefit of having wind-related data that can
mimic the weather conditions experienced by the wind turbines. However, with this data,
we still have the problem of not being able to have reliable predictions of future weather
patterns as we would only be able to gather current data. In order to solve this problem,
we can find a data source such as Weather Underground or the National Weather Service
that has the ability to predict future weather conditions. However, weather prediction is not
sufficiently localized to address the specific conditions for the turbines. This would require
further research into how these weather services gather weather data.

A second goal related to production predictability relates to enhancing the data gathered
from the production data source. There are times during the year when the University of
Minnesota - Morris shuts down the wind turbines for maintenance and research purposes.
As such, it would make the data potentially more predictable as occurrences of high wind
but little-to-no production would be explainable. This would entail finding dates when the
turbines are shut down and either removing or adding additional attributes to the data set in
order to take into account these exceptions.

The second set of goals for future work relate to the campus consumption of energy. The
initial goal of the research project was to predict both energy production and consumption,
however given time constraints, we were unable to explore the energy consumption predic-
tion problem. As such, a major goal for future work would be to find a way to model energy
consumption using a similar process. This would entail gathering campus-wide energy us-
age data and attempting to predict the usage based on weather data, data related to time
(e.g. days of week, whether or not class is in session), as well as the time of the year. This
would hopefully allow for an accurate model to be built in order to predict future energy
usage. The data required for this endeavor would not be difficult to obtain as most of the
necessary data is either shared with the production data or is available using a mixture of a
yearly calendar and the campus academic calendar.

When combining the production model and the consumption model, there are many inter-
esting relationships and implications to explore. One such relationship would be how the
high-production days relate to campus energy usage. This would allow us to explore how
weather patterns change both production and usage on campus. Likewise, it would allow
the University of Minnesota - Morris to use these models to influence decisions regarding
activities and student life. For example, the campus could schedule large events on days
when energy production is very high. Likewise, the campus could encourage students to
perform tasks that require high amounts of energy, such as laundry, on days when pro-
duction is expected to be high. This would allow the University of Minnesota - Morris
access to another tool to advance a dynamic energy policy in order to further the goal of
sustainability and efficient energy usage.
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6 Conclusions

When using machine learning techniques to build our models, we’ve found that these mod-
els may not be accurate enough to be used for predictive purposes. Some reasons for
this might be that we need to gather more predictive input variables, reconsider our factor
boundaries for our classifications, or find a better source for weather-related data. These
changes will hopefully lead to more accurate, reliable models.

Although our models are not as accurate as we’d like, the groundwork for developing this
project further in the future is in place. We are confident that, with time and patience, we
will be able to develop meaningful models that the University of Minnesota - Morris can
use to further optimize energy usage and production on campus. Likewise, if we are able
to achieve a reasonable set of models, we will be able to better understand wind energy
production trends.
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