

Parallel Computing in the Computer Science Curriculum

via the Computer Architecture Course

Mark Fienup

Computer Science Department

University of Northern Iowa

Cedar Falls, Iowa 50614-0507

fienup@cs.uni.edu

Abstract

This paper describes the author’s experience with incorporating parallel computing topics

into the Computer Science curriculum at the University of Northern Iowa via the

Computer Architecture course. It details the curricular and pedagogical issues including

course goals, parallel programming tools, and techniques for teaching parallel

programming topics.

1

1 Introduction

The University of Northern Iowa (UNI) is a comprehensive region university that offers
BA and BS Computer Science degrees, but has no engineering programs. Historically, the
only Parallel and Distributed Computing (PDC) topics in the Computer Science
curriculum was an introduction to concurrent programming as part of the elective
Operating Systems course. With the advent of widely available multi-core CPUs and
many-core GPUs, traditional sequential programming skills are clearly not enough for
undergraduate Computer Science students. This paper describes the author’s experience
with incorporating parallel computing skills into the Computer Science curriculum via the
Computer Architecture course.

Ideally, PDC topics would be integrated throughout the Computer Science curriculum,

but that would require a major redesign of the curriculum with consensus and cooperation

from all faculty members. Even adding a new, dedicated PDC course to the already full

CS curriculum was not an option. As the primary instructor for the existing Computer

Architecture (CS 2420) course this author was able to substantially revise its content so

that the latter two-thirds of the course was dedicated to parallel computing while

reinforcing Computer Architecture concepts introduced in the first third of the course.

2 Curricular Issues

The Computer Architecture course at UNI has two prerequisite courses: (1) Introduction

to Computing (CS 1510) and (2) Computer Organization (CS 1410). The Introduction to

Computing course is a four-hour beginning programming course with a weekly lab that is

offered in either Python or Ada. However, most Computer Architecture students will

have had the Data Structures course and our Intermediate Computing course which

focuses on object-oriented design using Java. The Computer Organization course content

is roughly split into thirds: (1) data representation and digital logic including common

computer circuits (i.e., decoder, MUX, adders, flip-flops, register file, RAM memory,

control unit), (2) assembly language programming, and (3) hardware support for the

operating system.

The course description of the traditional Computer Architecture course is as follows:

CS 2420. Computer Architecture -- 3 hrs.

Basic concepts of computer architecture with special focus on principles underlying

contemporary uniprocessor design. Interaction of hardware and software, and

consideration of efficient use of hardware to achieve high performance. Topics include

instruction set design, processor design, pipelining, the memory hierarchy, design trade-

offs, I/O systems, performance measurement, and multiprocessors.

2

The main philosophy of the course has always been that knowing how the hardware

works enables the programmer to write more efficiency software. However, it was

traditionally taught with a computer engineering focus.

The revised Computer Architecture course condenses the computer engineering topics to

the first third of the semester with the remaining two-thirds focused on hands-on parallel

programming using widely available tools: (1) pthreads on multi-core computers, (2) MPI

on a cluster, and (3) CUDA programming on GPUs. The parallel programming examples

helped to drive home the concept that "knowing how the hardware works enables the

programmer to write more efficiency software." The weekly schedule of topics during

the first offering in Fall 2013 is shown in Table 1.

Week Major Topics Covered

1
Review of von Neumann architecture

Hardware support for the operating system

2 Memory hierarchy – cache

3 Virtual memory – paging and segmentation

4 Pipelining, superscalar, and multi-core architectures

5
Flynn's taxonomy, shared vs. distributed memory machines

Interconnection networks

6 Review of above and Test 1

7
C and Linux overview

Parallel programming design – task vs. data parallelism

8

Pthread introduction – sum 1D array of floats

Common synchronization patterns using mutexes and condition

variables

9
Concurrent shared data structures and deadlock

Static vs. dynamic allocation of work

10

Pthread textbook examples: n-body and Traveling Sales Person (TSP)

problems

MPI introduction – sum 1D array of floats

11

Common synchronization patterns using MPI group communication

functions

MPI textbook examples: n-body and TSP problems

12 Review of pthreads and MPI and Test 2

13
CUDA Architecture and count 3s in 1D array of integers and sum 1D

array of floats

14

2D Successive Over-Relaxation (SOR) pthread and MPI homework

assignment comments

2D SOR on GPU design and implementation discussion

15
n-body and TSP GPU implementation discussion

Review for Final Examination

Table 1: Computer Architecture Course Weekly Schedule.

3

3 Pedagogical Techniques Utilized in the Course

The pedagogical techniques described below are not especially novel, but the author has

found them extremely useful to aid student learning.

3.1 Active-Learning in the Classroom

First, class-time was not spent lecturing. Instead, active-learning techniques were utilized

as described in [1]. Basically, "mini"-lectures of about 10 minutes were followed by

small groups of students trying to answer questions using the mini-lecture material.

Whole-class discussion followed each group activity to discuss answers and make sure all

students understood the material correctly. This has been shown to reset the students’

attention span, so the next mini-lecture can be effective [2]. The questions discussed are

available at the course website: http://www.cs.uni.edu/~fienup/cs2420f13/.

3.2 Common Examples Across Each Parallel Programming
Environment

The second pedagogical technique used was introducing the three parallel programming

environments (pthreads, MPI, and CUDA for GPUs) using the same simple problem:

summing a one-dimensional array of floats. This technique has the advantages of:

 allowing students to focus on aspects of the parallel programming environment

without the difficult of also understanding a complex problem, and

 allowing students to understanding the similarities and differences of each parallel

program environment.

The course textbook [3] further leveraged this second advantage by discussing solutions

to two larger problems (n-body problem and traveling sales-person problem) using

several parallel programming environments including pthreads and MPI. The textbook

had no coverage of GPU programming, but possible solutions to these problems were

outline during week 15 of the course.

The parallel programming projects over the three parallel programming environments

was also a common task: 2D Successive Over-Relaxation (SOR) (often used in 3D form

to solve differential equations such as Navier-Stokes equations for fluid flow). Detailed

descriptions are available at: http://www.cs.uni.edu/~fienup/cs2420f13/homework/.

4 Parallel Programming Tools

In the not too distance past, introducing parallel programming into the curriculum would
have required specialized hardware or remote access to a national Super Computer center.
Students might have viewed parallel programming as a specialized skill rarely used in the

http://www.cs.uni.edu/~fienup/cs2420f13/
http://www.cs.uni.edu/~fienup/cs2420f13/homework/

4

"real" world. Now with the advent of widely available multi-core CPUs and many-core
GPUs, local hardware can be used with freely available parallel programming tools.
Clearly, students are more motivated if they view parallel programming as a relevant, real-
world programming skill.

The pthread library was chosen for its wide availability and its shared-memory parallel
programming paradigm. Students in the course had a choice of remotely accessing a
multi-core student server for pthread programming or using a lab computer with an Intel
i7 processor which could run eight threads (four cores with dual SMTs) in parallel. The
standard g++ compiler with the pthread library were utilized.

The MPI library was chosen for its wide availability and its message-passing distributed-
memory parallel programming paradigm. Students in the course remotely accessing a
multi-core Linux server running a collection of virtual machines configured as a MPICH
cluster. Ideally, a network of workstations might have been a more realistic MPI
environment, but this configuration was easy to setup and manage.

Finally, CUDA programming for GPUs was chosen for its wide availability and its SIMD
parallel programming paradigm on the many-core GPU combined with heterogeneous
programming of the host processor. Students in the course remotely accessed a Linux
server containing a collection of GPU devices (several Tesla C2070 cards and a Tesla
C1060 card). This configuration eliminated the need of dedicated computers each with
programmable GPU cards.

While programming with multiple of these environments simultaneously is possible, and
even desirable, time constraints limited the course to considering each parallel
programming environment separately.

5 Computer Architecture Topics Reinforced via Parallel
Programming Examples

The traditional Computer Architecture course utilized predominantly pencil-and-paper
homework exercises to illustrate concepts. The "new" version allowed for more concrete
examples from the parallel programming portion of the course to illustrate Computer
Architecture concepts. Some examples are listed in Table 2.

Computer Architecture Topic Reinforcing Parallel Programming Example

Cache hit rate Block vs. cyclic data allocation of 1D arrays

False-sharing in cache line Pthread id i sum into threadSums[i]

Virtual memory
Pinning an array on the host to speed

cudaMemcpyDeviceToHost

Performace Analysis Parallel speedup and Amdalh's law

Table 2. Computer Architecture Topics Reinforced via Parallel Programming Examples

5

6 Course Evaluation

Evaluation of the modified Computer Architecture course against the traditional Computer
Architecture course proved difficult since the modified Computer Architecture course
condenses the traditional course’s content to the first third of the modified course. The
latter two-thirds of the modified course teaches parallel programming which was not
covered in the tradition course. Thus, we are comparing “apples” and “oranges”. The best
metric between the two versions of the Computer Architecture course is arguably the
DWF (D-grade, Withdrawal, or F-grade) rates which correlate with mastery of “related”
content, but also hints at student motivation to master the content. Table 3 summaries the
DWF rate of both versions of the course.

Computer Architecture Version
Enrollment DWF Rate

(#Ds, #Ws,#Fs)

Tradition Course without Parallel Programming

(Fall 2008 to Spring 2012)

91

23.1%

(1 D, 6 Ws, 14 Fs)

Modified Course with Parallel Programming

(Fall 2013)

37

2.7%

(0 Ds, 0 Ws, 1 F)

Table 3. DWF rates for both versions of the Computer Architecture Course

As Table 3 shows the DWF rate for the modified Computer Architecture course with
parallel programming was substantially better, but the sample size it too small to draw any
statistically significant conclusions.

7 Conclusions and Future Improvements

Overall the modified Computer Architecture course with parallel programming content

was a success from the author’s perspective. Previously no parallel programming content

was being taught in the Computer Science curriculum at the University of Northern Iowa,

so devoting two-thirds of the Computer Architecture course to parallel programming is a

substantial improvement. The trade-off of a condensed coverage of the traditional

Computer Architecture topics is more than offset by parallel program skills on widely

available multi-core CPUs and many-core GPUs.

Acknowledgment

The author would like to thank his colleague Dr. Paul Gray for setting up and
administering the MPI and GPU servers used during the Fall 2013 Computer Architecture
course detailed in this paper.

6

References

[1] M. Fienup, “Active and group learning in the computer architecture classroom,”
 Proceedings of the 2000 Workshop on Computer Architecture Education (WCAE
 ’00), ACM, 2000, article no. 12, doi: 10.1145/1275240.1275256.
[2] M. Fienup and J. P. East, “Improving computer architecture education through the
 use of questioning,” Proceedings of the 2002 Workshop on Computer Architecture
 Education (WCAE ’00), ACM, 2002, article no. 7, doi: 10.1145/1275462.1275473.
[3] P. S. Pacheco, An Introduction to Parallel Programming. Morgan Kaufmann
 Publishers, Burlington, MA, 2011.
[4] Computer Architecture course Fall 2013 URL:

http://www.cs.uni.edu/~fienup/cs2420f13/

http://www.cs.uni.edu/~fienup/cs2420f13/

