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Abstract 

 

In order for unmanned aircraft systems (UAS) to fly safely into civil airspace, the 

development of vigorous unmanned aircraft’s Accident Avoidance System (UAS-AAS) 

is rather crucial.  However, accurate localization is a key prerequisite for a UAS-AAS to 

be successful. This paper investigate the application of two filtering and smoothing 

techniques to a UAS given the aircraft dynamics, sensor performance, and the 

environment in which the aircraft operate.   The navigational system provides data of 

position, velocity and noise. Navigational data is randomly generated. The estimated 

position of the UAS is then determined by applying the Kalman filtering, Kalman 

smoothing, Particle filtering and Particle smoothing.  The experimental result shows that 

irrespective of the errors in the measurements, both techniques perform well in estimating 

the true position of the system. However, the smoothing techniques show the higher 

accuracy of the results due to the use of more future data than filtering technique. 
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1 Introduction 
 

Unmanned Aircraft Systems (UASs) have been in existence for many years. However, 

recently the use of UASs has experienced immense growth and play a central role in 

scientific research, defense and in certain industries [1] and [2]. In history, the use of 

UAS technologies lie at the core of military operations such as spacecrafts, aircrafts, 

helicopters, free-flying robots or mobile robots,  surveillance, target identification and 

designation, mine detection, and reconnaissance [1] and [2]. As their use continues to 

evolve, research has peaked on this technology to discover its applicability to other 

domains. UAS technologies are categorized as safety critical systems. This is due to them 

being employed in high-risk tasks that require rigorous development methodologies to 

assure its integrity. A system that is defined as safety critical can have serious 

ramifications if a fault occurs. These implications include the risk of injury, loss of life, 

data, and property. According to National Transport Safety Board (NTSB), injury and 

damage by NTSB classification for U.S. Air carriers operating under 14 CFR 121 for the 

year 2012 is 16 and 11 respectively, see Table 1 [3].   

 

 Accidents    

Year Major Serious Injury Damage 

2008 4 1 8 15 

2009 2 3 15 10 

2010 1 0 14 14 

2011 0 0 19 12 

2012 0 0 16 11 

 

Table 1: Accident by NTSB Classification, 2008 through 2012 for U.S. Air Carriers 

Operating Under CFR 121 

 

Definition of NTSB Classifications: 

Major - an accident in which any of the three conditions are met: 

a part 121 aircraft was destroyed or there were multiple fatalities or there was one fatality 

and a part 121 aircraft was substantially damaged. 

Serious - an accident in which at least one of the two conditions are met: 

There was one fatality without substantial damage to a part 121 aircraft or there was at 

least one serious injury and a part 121 aircraft was substantially damaged. 

Injury - a nonfatal accident with at least one serious injury and without substantial 

damage to a part 121 aircraft 

Damage - an accident in which no person was killed or seriously injured, but in which 

any aircraft was substantially damaged 
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Unmanned aircraft are not currently permitted access to civil airspace in the United States 

without special permission from the Federal Aviation Administration (FAA). One of the 

primary concerns with integrating unmanned aircraft is their inability to robustly sense 

and avoid other aircraft [6].  In order for UASs to fly safely into civil airspace, the 

development of vigorous unmanned aircraft’s Accident Avoidance Systems (UAS-AAS) 

is rather crucial. However, accurate localization is a key prerequisite for an AS-AAS to 

be successful.  Therefore, keeping track of these systems is of paramount importance. 

 

By definition, navigation is a process of determining the current parameters of 

movement, like accelerations, velocity and position of center of mass, of the moving 

object. The system that provides us with navigational criterion is called Navigation 

System. One of the most used Navigation Systems, which is designed for a wide range of 

vehicles, is the Inertial Navigation System (INS). Other system, which is the most 

famous, is the Global Positioning System (GPS).  However, several errors are associated 

with the GPS measurement [13]. It has superior long-term error performance, but poor 

short-term accuracy.  To ensure high accuracy of monitoring, data is fused to combine 

measurements from GPS and INS.  The short term accuracy of INS is good and the long-

term accuracy is poor.  If the signal of GPS is hampered, the INS enables availability of 

data until GPS signal is reestablished [14]. 

 

To detect any unexpected change in real time, the Kalman filtering (KF) is used.  In 1960 

Rudolph E. Kalman published an article describing a recursive solution to the discrete-

data linear filtering problem [4]. Since then, as a result of advances in digital computing, 

the Kalman filtering has been the subject of extensive research and applications, 

particularly in the area of autonomous or assisted navigation [5].  The Kalman filtering 

(KF) is a set of mathematical equations that provides an efficient computational means to 

recursively estimate the state (position and velocity, for example) of a physical system 

from noisy observation over time. Specifically, the aircraft might be specified by position 

(A,B,C) and velocity (A`,B`,C`) at each point in time. The next state Xt+1 is a linear 

function of the current state Xt, plus some Gaussian noise. 

 

The Kalman filter performs well in tracking a linear system, but it often misses the object 

when the object changes its direction in an extremely short timeframe.  In situations 

where the problem is nonlinear or the noise that distorts the signal is non-gaussian, the 

kalman filtering/smoothing (KS) provides a solution that is far from optimal [17].  As a 

result of its limitation, numerous fixes and modifications have been proposed by 

researcher for the Kalman filter/smoothing. Proposed methods provide better estimates 

about the process variable [15].  In this case, the particle filtering (PF)/smoothing (PS) is 

used due to its excellent performance in difficult situations including communications, 

signal processing, navigation and computer vision.   

 

Particle filtering are sequential Monte Carlo methods that are used in numerous problems 

where time-varying signals must be presented in real time; and where the objective is to 

estimate various unknowns of the signal and/or detect events described by the signals 



3 

 

[17].  Implementing both filtering / smoothing algorithms allows accurate estimation in 

the position of the unmanned aircraft vehicle (UAV) system whether it behaves linear or 

nonlinear. 

 

The purpose of this paper is to demonstrate that Kalman filtering/smoothing and particle 

filtering/smoothing performs well in tracking UAS systems. By gathering information 

and storing it in a database. This allows systems to both store and retrieve past, present, 

and future information in the context of physical locality and direction of gaze.  A 

comparison is also provided of the localization accuracy between the KF/KS 

implementation and the PF/PS implementation. 

 

 

2 Related Work 
 
As with many things in history, it is difficult to pinpoint a single defining moment when 

the Kalman filter was first used in virtual reality (VR). This stems from the fact that there 

was no clear definition of VR and when the use of VR was borned.  Flight simulators are 

usually seen as VR systems, and their development goes back to the early 1960s 

especially considering digital display [8].  However, it was not until the mid 1980s 

Kalman filter was documented as being used along with VR [9] and [10]. This work is 

relevant in that it gave rise to the development of the Space Synchro (SPASYN) magnetic 

head-tracking technique [11]. It gives rise to the primary means for head tracking in VR 

today. 

 

In 1988, Rebo’s masters thesis implemented predictive head mounted display (HMD) 

tracking using Kalman filters on the full 6 degree of freedom (DOF) estimates from the 

Polhemus system [12]. While the contribution is profound, it is interesting that researcher 

consider the Kalman filter as a tool for improving motion prediction. 

 

BARAA MUNQITH ALBAKER et al. in their study of developing a functional 

architecture for unmanned aircraft collision avoidance system, defined an approach based 

upon flight plan sharing, and cooperatively avoids potential conflict through multi-agent 

peer to peer aircraft negotiation and predefined maneuvering in heading and speed 

changes. The researchers consider a team of cooperative and homogeneous UASs. For 

instance, UAS sharing same airspace and instance, and same altitude. The predefined 

maneuver is depending directly on the identification of relative collision angle between 

colliding aircraft. The angle is computed by comparing flight plans of computing and 

conflicting agents in the near-future and estimate the angle at a time when aircraft's 

protected zone overlapping is reported. 

 

The developed functional architecture allows each aircraft to negotiate with each other to 

determine a safe and acceptable resolution when a potential conflict is detected. The 

proposed approach uses simple negotiation peer to peer protocol to solve the conflicts 

between two aircraft. This peer to peer approach can be extended to consider multiple 

collisions among more than two aircraft through iterative utilization of the approach. The 

simplicity in the mathematics leads to fast computing algorithm.  
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Thus conflict resolution will be obtained quickly allowing it to be implemented in time 

critical situations [7].  The problem with their approach is that the approach depends 

solely on radar sensor and collision avoidance system. It does not utilize noise as the 

Kalman Filter does. Hence, calculation had to be performed for four sectors (that is, 

Sector A-course sector; Sector B-left side collision; Sector C-Right side collision; and 

Sector D -Rear collision. It also raises the question as it relates to the overhead of 

performing four separate calculations at any point in time. 

 

In the paper entitled Mobile Robot Position Estimation using Kalman filter, the 

researchers implement KF and extended kalman filter (EKF) for determining the position 

of a mobile robot [19].  Irrespective of the error in measurement the filters were 

successful in estimating the robot’s’ true position. 

 

Robert. J Pawlak in his study combined unscented kalman and particle filtering for 

tracking closely spaced object.  Particle filter was used to estimate the probability density 

of objects within a group track.  A bootstrap particle filter was employed, in which the 

update was accomplished through a straightforward propagation of the particles through 

the state space.  Particles were updated based on the assumption that each particle 

corresponds to a tracked object, which travels with same velocity as the group.  

Nonetheless, individuals object within the group does not always move in perfect 

synchrony with the centroid of the group. As a result, a small noise ( ) term is added to 

account for the uncompensated movement.  The result can be envisioned as a probability 

density function (PDF), which can be compared to the original PDF sensor measurement 

[18]. 

 

 

3 Methodology 
 
In this propose architecture, the unmanned aircraft vehicle (UAV) is equipped with 

GPS/INS and some control algorithm.  Initial information such as identification of 

vehicle, flight plan and intention with cooperative target on UAS is garnered from the 

central repository. Each system monitors the environment through a periodical 

calculation on its surroundings and stores the information in a shared repository. The 

database then uses the calculated data from the computing aircraft to figure out the 

collision parameters. This sharing of information allows UAV to predict an occurrence of 

a conflict at some point in time. If a possible impact is detected in the near future, the 

aircraft then selects a suitable maneuvering command for both computing and conflict, 

based on the received information from the database. This functionality is considered to 

be a part of a system known as the unmanned aircraft’s Accident Avoidance System 

(UAS-AAS). Fig. 1 shows the UAS-AAS functionalities. The system also interacts with 

an external database.  The external database is referred to as a duplicate database, which 

interacts with the UAS-AAS local database. This provides availability of data in the event 

that a disaster should occur with the local UAS database. 
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Figure 1: Accident Avoidance Systems for UAS 

 

 

3.1 Filtering  

 
Filtering is a frequently used method in engineering and embedded systems. A good 

filtering algorithm can reduce the noise from signals while retaining the useful 

information.  The technique involves a process of computing the belief state – that is, the 

posterior distribution over the most recent state (Xt) - given all evidence (e) to date. In 

our example, we wish to compute P (Xt|e1:t).  In the UAS example, this would mean 

computing the probability of the current location, given all the observation of the aircraft 

position made so far. Figure 2 shows the probability of the UAS location [16]. 

 

 
Figure 2: Graph showing movement of a UAS system 

Xt: Represents the estimated location of the UAS at time t. 

Xt -1: Represents past location of UAS at time t-1. 

e1:t: Represents the evidence of the UAS from time 1 to t. 

et+1: Represents next evidence of the UAS at time t+1 
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3.1.1 Kalman Filtering   

 

The kalman filter is an intelligent way to incorporate measurement data into an estimate.  

The algorithm used in conducting this study realizes that measurements are noisy and 

sometimes these measurements should be ignored or have only a diminutive effect on the 

state estimate.  By incorporating more information from reliable data than from 

unreliable data, this technique smooths out the effects of noise in the state variable being 

estimated.   Below is the algorithm that is incorporated in the study.  The algorithm is 

adopted from Russel and Norvig [16]. 

 

P (Xt+1|e1: t+1) = f (et+1, P (Xt |e1: t)) 

 

Two steps are involved in the KF process: firstly, calculation for the current state 

distribution is done, that is, from 1 to t+1; secondly, the current state is updated using 

new evidence et+1. 

 

P (Xt+1 | e1:t+1) = P(Xt+1 | e1:t , et+1 )    (separating evidence ) 

= α P (et+1 | Xt+1, e1:t ) P(Xt+1 | e1:t )  (application of Bayes’ rule ) 

= α P (et+1 | Xt+1) P (Xt+1 | e1: t)  (by the Markov sensor assumption). (1) 

 

α is a normalization constant used to ensure probabilities add up to 1. The second term, P 

(Xt+1 | el:t) represents a one-step prediction of the next state, and the first term updates this 

with the new evidence.  The one-step prediction for the next state is obtained by 

conditioning on the current state Xt: 

 

P (Xt+1 | e1:t+1)  = α P(et+1 | Xt+1) ∑xt P(Xt+1 | xt , e1:t) P(xt | e1:t )  

= α P (et+1 | Xt+1) ∑xt P (Xt+1 | xt) P (xt | e1:t ).     (2) 
 

The filtered estimate P (Xt | el:t) is seen as a "message" fl:t that is propagated forward 

along the sequence, modified by each transition and updated by each new observation. 

The process is given by 
 

f1:t+1 = α FORWARD(f 1:t, et+1) where f1:t = P(Xt | e1:t) f1:0 = P(X0) 

Where FORWARD implements the update described in (2). 

 

 

3.1.2 Particle Filtering  

 
The particle filter is a collection of particles where each particle represents a potential 

current mean state of the UAS system. That is, it is a Monte Carlo simulation of data to 

get the estimates and can be quite effective in approximating when given enough samples 

[16]. Because the particle filtering uses random sampling, it does not share the same strict 

gaussian prerequisites as the Kalman filtering.  There are many factors that can make a 

UAS system behave erratic.  For instance, the region/environment in which the UAS is 

action in, and there could be other algorithms that is time dependent with exponential 
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time function. By adding this non-linearity to the action command and data of the KF, 

strange distribution is produced that does not follow the linear rule of KF.  With that 

being said, KF becomes obsolete, so we opt for particle filter. Particle filter consist of a 

series of steps; first, particles are sampled, samples are then weighted. Finally, values are 

resampled based upon the weighted values. The weights are based upon the probability of 

the given observation for a particle, given the actual observation. 

 

Particle filtering works as follows: First, a population of N initial-state samples is created 

by sampling from the prior distribution P (Xo).  That is, N (xt|e1: t) / N = P (xt|e1: t) Then 

the update cycle is repeated for each time step: 

 

1. Each sample is propagated forward by sampling the next state value Xt+1: 

N (xt+1 | e1:t ) =∑xt P(xt+1 |xt) N(xt| e1:t)      (3) 

 

2. Each sample is weighted by the likelihood it assigns to the new evidence, P (et+1 | xt+1). 

W(xt+1 | e1:t+1 ) = P(et+1 |xt+1) N(xt+1| e1:t)      (4) 

 

3. The population is resampled to generate a new population of N samples proportional to 

W.  

N (xt+1 | e1:t+1 ) / N =αW(xt+1|e1:t+1)  

= α P (et+1|xt+1) N (xt+1|e1:t)  

= α P (et+1|xt+1) ∑xt P (xt+1|xt) N (xt|e1: t)  

= α P (et+1|xt+1) ∑xt P (xt+1|xt) P (xt|e1: t)  

= P (xt+1|e1: t+1)         (5) 

 

 

3.2 Smoothing  

 
We compute P (Xk|e1: t) for some k such that 0 ≤ k < t.  In the UAS example, it might 

mean computing the probability of the UAS position at some point in time, given all the 

observations of the UAS location made up to today.  Smoothing gives a better estimated 

trajectory of the state than was available at the time, because it incorporates more 

evidence [16].  Computation is done in two phases- the evidence up to the past time k and 

the evidence from the past k+1 to t. 

 

P(Xk|e1:t) = P(Xt| e1:k , ek+1:t ) :  dividing up the evidence e1:t into e1:k , ek+1:t 

= α P(Xk |e1:k ) P(ek+1:t |Xk, e1:k ) :  using Bayes’ rule  

= α P(Xk |e1:k ) P(ek+1:t |Xk) :   using conditional independence  

= α f1:k bk+1:t .          (6) 

 

The forward message f1:k is computed by filtering forward from 1 to k, as depicted by 

equation (2).  While the backward message bk+1:t  is computed as P(ek+1:t | Xk) 
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4 Results 
 

In this section of the paper, we compare the results obtained by simulating the filtering 

cases with the ones obtained from the smoothing case. For this purpose algorithms are 

implemented in Matlab.  A simple case was considered: A UAS that follows a path 

obtained for the system model. The figures that follow show, the estimated path of the 

UAS compared to the real path. 

 

For the KF the simulation is done with the following parameters: 

measured noise = 10; accelerated noise = 0.2; transitional matrix = [1 dt; 0 1]; input 

matrix = [dt
2
/2; dt]; measurement matrix = [1 0]; initial state vector = [0; 0]; initial state 

estimate = initial state vector; measurement error covariance = measured noise
2
; process 

noise covariance = accelerated noise
2
* [dt

4
/4 dt

3
/2; dt

3
/2 dt

2
]; initial estimated covariance 

= process noise covariance 

 

 
 

Figure 3: Position estimation with the Kalman filtering 

 

 
 

Figure 4: Position estimation with the Kalman smoothing 
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In fig. 3 and 4, the path estimation of the UAS is shown with the help of KF/KS. The blue 

line represents the location of the UAS (true position), the cyan represents the measured 

position (noisy), and the red line shows the tracking of the UAS using KF/KS. 

 

For the PF the simulation is done with the following data: 

Let the initial state = 1; process noise covariance = 1.0; measurement noise covariance 

=0.1; number of particle = 100; 

The larger the number of particles/samples the better the computation but more 

computation is required. 

 

 
 

Figure 5: Position estimation using Particle filtering 

 

 
 

Figure 6: Position Estimation using Particle smoothing 
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5 Conclusion 

 
One of the principal concerns with amalgamating unmanned aircraft into civil airspace is 

their lack of ability to robustly sense and avoid other aircraft.  In order to overcome the 

shortcomings accurate localization is an essential requirement.  Algorithms that perform 

well in tracking objects are Kalman filtering/smoothing and particle filtering/smoothing. 

Kalman filtering/smoothing is a linear system of equation and often performs well in 

tracking a linear system.  However, it lacks the ability to perform when a problem is 

nonlinear or the noise that distorts the signal is non-gaussian.  In such instance the 

particle filtering/smoothing is a more optimal solution. 

 

The experimental result shows that irrespective of the errors in the measurements, both 

filters perform well in estimating the true position of the system. However, the smoothing 

techniques show the higher accuracy of the results due to the use of more future data than 

filtering technique. The mean squared estimation (mse) errors for Kalman filtering and 

smoothing are 5.0578 and 3.2473 respectively. While 0.10726 and 0.09147 are the 

calculated errors for Particle filtering and smoothing consequently. 

 

These techniques can be applied to other autonomous systems to give an accurate and 

improved estimation based on a series of noisy estimates. 
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