
Error Minimization in 3-Dimensional Model
Reconstruction Using Sparse Bundle Adjustment and the
Levenberg-Marquardt Algorithm on Stereo Camera Pairs

Luke Bonde, Allison Brumfield, Ye Yuan
Mathematics, Statistics, and Computer Science

Saint Olaf College
Northfield, Minnesota 55057

bonde, brumfield, yuan@stolaf.edu

Abstract

In computer vision and image processing, it is often desirable to reconstruct the 3D ge-
ometry of a scene using 2D images. Bundle adjustment is a common optimization algo-
rithm often used as the final step of this type of 3D model reconstruction to simultane-
ously refine scene and camera parameters using the Levenberg-Marquardt non-linear least
squares minimization algorithm to reduce reprojection error. sba, a C/C++ implementation
of sparse bundle adjustment, was developed by Lourakis and Argyros for computational
effectiveness by taking advantage of the sparseness of matrices involved in the Levenberg-
Marquardt computation. We utilize sba to implement bundle adustment for a stereo camera
model, in which pairs of cameras are described by both individual and joint parameters.
However, sba is not designed for stereo models. This paper highlights the development of
a stereo camera model in order in order to interface data collected by stereo camera pairs
with sba to obtain optimal results for 3D reconstruction.

1 Introduction

In 3D reconstruction problems, bundle adjustment is most commonly used as a method for
optimizing 3D structure and viewing parameters. This type of optimization method finds
a solution by simultaneously optimizing both 3D structure and camera parameters by min-
imizing a cost function that describes the model’s fitting error. Exploiting the sparseness
of the matrix calculations, sparse bundle adjustment is a more computationally efficient
method of calculating this type of minimization. An implementation of SBA was devel-
oped by Lourakis and Antonis, called sba [5]. Implemented as a C/C++ package which
uses the Levenberg-Marquardt minimization algorithm with a sparse Jacobian, the package
solves bundle adjustment problems efficiently for the single camera model.

However, for our specific 3D reconstruction problem, bundle adjustment and sba cannot
be simply transfered to stereo camera pairs. The image data set we seek to optimize was
acquired by dual cameras, marked as left and right and fixed on a stereo base. Such a cam-
era pair can be modeled as stereo camera with fixed relative position between the optical
centers of each camera. To use bundle adjustment method to improve our 3D reconstruc-
tion problem, we need to implement a solution using the sba package and an appropriate
camera model.

We focus on simultaneously optimizing parameters describing camera pair motions and
3D structures by constructing a stereo camera model capable of interfacing with sba. The
basis of our work in defining this model expands upon the stereo camera model published
by Kutz et. al. [3]. We consider an additional rotation of the right camera not considered
by Kurz et. al. and developing a method for sba to account for the situation when a 3D
point is occluded in only one camera in the pair.

This paper focuses on the particulars of our implemented solution of bundle adjustment for
a stereo camera pair model. Section 1 introduces background information for this project,
including the pinhole camera model, Levenberg-Marquardt algorithm, bundle adjustment,
and sba package; Section 2 details our implemented solution; Section 3 shows our results
of our implemented minimization with a series of data sets; Section 4 discusses further
work and improvements.

1.1 Projective Camera Model

The pinhole camera model formally describes the mathematical relationship between the
world coordinates of a 3D point and its 2D projection onto the image plane of an ideal
pinhole camera, where the theoretical camera aperture has an infinity small radius. There
is a unique camera and respective camera matrix associated with every image of a 3D scene.
A general description of the mathematical model is given as follows.

1

Let

K =

α γ u0
0 β v0
0 0 1

be the intrinsic camera parameter matrix, where α = fmu, β = fmv represent the focal
length in pixels. Here, f is the focal length in the camera coordinate system and mu,mv

are scale factors derived from the image resolution relating pixels to the camera coordinate
system. (u0, v0) is the principal point of the image, and γ is a skew factor, usually equal to
0. Suppose R is the 3 × 3 rotation matrix relating the orientation of the camera frame of
reference to the world frame of reference and T is the 1×3 translation matrix representing
the location of the camera’s optical center with respect to the origin of the world coordinate
system. Let I be the 3× 3 identity matrix. Define the 3× 4 camera matrix

C = KR(I|T)

which transforms 3D homogeneous coordinates in the world coordinate system to 2D
points on the image plane of a camera. Given a homogeneous 3D point, b, and its pro-
jection on the image plane, or feature points, x,

b =

x
y
z
1

 and x =

uv
w

 ,

the camera matrix C relates the points up to a scalar factor s, such that

sx = Cb

Homogeneous coordinates are used to allow translations and rotation of vectors via matrix
multiplication. For a more rigorous introduction to the camera matrix and homogeneous
coordinates, see [2].

1.2 Bundle Adjustment

Bundle adjustment (BA) is the process of jointly optimizing the location of the 3D points
and camera parameters. Given feature points in several camera images of the same 3D
scene, BA attempts to resolve discrepancies in camera and 3D point measurements. Lourakis
and Argyos claim bundle adjustment is the most widely used optimization technique for a
feature point based approach to 3D model reconstruction [5].

A discussion on the bundle adjustment algorithm present in [5] is presented in this paper.
Assume n 3D points are visible in m images shown in fig. 1. Assume that all 3D points
have an associated feature point in all images. Define xij to be the 2D projection of the ith

2

3D point onto image with associated camera j parameterized by vector aij describing the
intrinsic and extrinsic camera parameters and the 3D point by vector bij describing posi-
tion. BA attempts to accurately describe the location of the n 3D points and m cameras
along with additional optical camera parameters by jointly minimizing the parameters in
aij and bij. To accomplish this, BA calculates the reprojection error of each 3D point pro-
jected onto each image plane. The reprojection error is the Euclidean distance between the
2D projection xij and the position of the feature point implied by aij and bij. BA minimizes
the total reprojection error, specifically

min
aj ,bi

n∑
i=1

m∑
j=1

d(Q(aj,bi),xij)
2

where Q(aj,bj) is the 2D projection of 3D point i onto image j and d(x,y) is the Eu-
clidean distance between x and y. Because of the flexibility in defining aij, BA easily
accommodates any monocular camera model parameters. If κ is the dimension of aij and λ
the dimension of bij, the total number of parameters to be minimized is mκ+nλ and must
be considered when scaling the number of parameters, images, and 3D points [5].

1.3 Levenberg-Marquardt Algorithm

Given a system of cameras and 3D points whose parameters not ideal from a lack of pre-
cision or accuracy, an optimization algorithm is required to refine these parameters. In
particular, the algorithm should reduce the discrepancy between the known location of fea-
ture points and their projected locations, known as the reprojection error. Given that the
total reprojection error is the sum of the square of distances between feature points and
projected points, we require a non-linear least squares algorithm to find a minimum in the
reprojection error function. The Gauss-Newton algorithm (GNA) is one such method spe-
cially designed to find the minimum sum of squared function values. Gradient descent is
also a common method to find the local minimum of a function.

The Levenberg-Marquadt (LM) algorithm was originally proposed by Levenberg in 1944,
and later by Marquart in 1963. It is an algorithm used to a local minimum of a multivariable
function, which is in the form of the sum of squares of nonlinear real-valued functions. The
LM algorithm combines GNA and the method of gradient descent: when the parameters are
far from their optimal value, the LM algorithm uses a gradient descent approach; when the
parameters are close their optimal value, the LM algorithm refines using the GNA. The LM
algorithm is more robust than GNA because it finds a solution even when the parameters
are far from optimal. However, LM algorithm can only find local minimum, which is not
necessarily the desired global minimum. A brief formal description of the LM algorithm is
given.

Let f be a function that maps a parameter vector, p ∈ Rm, which contains all the parame-
ters in the model, to a predicted measurement vector x̂ ∈ Rn such that x̂ = f(p). An initial

3

estimate for p and x̂ are needed to find an optimal estimate for the parameter vector which
best satisfied the mapping f , which is achieved by minimizing the squared reprojection er-
ror εT ×ε, where ε = x− x̂ for all p and x. For small values of ‖δp‖, f can be approximated
by

f(p + δp) ≈ f(p) + Jδp

where J is the Jacobian matrix of the multivariable function f with respect to p.

This algorithm is an iterative process, starting with p0 and converging toward a local mini-
mizer for the function f . For each iteration, it finds the value δp which minimizes the quan-
tity ‖x− f(p + δp)‖ ≈ ‖x− f(p)− Jδp‖ = ‖ε− Jδp‖. The minimum can be achieved
when Jδp − ε is orthogonal to the column space of J, which is equivalent to the problem of
solving the normal equations JT (Jδp − ε) = 0, and solve for δp

JTJδp = JT ε.

The LM method actually solves a variation of the equation above called the augmented
normal equations

Nδp = JT ε,N ≡ JTJ + µI, µ > 0

where µ is called the damping term. If the value of δp leads to a smaller value of εT ε, the
update in p is accepted and the process is repeated with a smaller damping value µ. Such
process repeats until a value of δp which decreases the error is found. Solving the above
equation repeats for different decreasing µ until an acceptable value of p is found related
to one iteration in the method [5].

1.4 Sparse Bundle Adjustment

Sparse Bundle Adjustment (SBA) is a variation of BA using the LM algorithm. We provide
a brief, informal description of SBA; a formal description can be found in [5].

The standard LM solution is elegant in theory, but computationally slow. As briefly ex-
plained in Section 1.3, the LM algorithm involves the solution of linear systems know as
the normal equations. These linear systems are repeatedly solved in the LM algorithm and
each computation of the solution to a dense linear system has complexity O(N3) in the
number of unknown parameters [5]. From this, it is clear that general purpose LM code
implementations are very computationally demanding when used for a large number of pa-
rameters. This remains true if other non-linear least squares algorithms other than LM are
used. The situation is further complicated by the fact that the size of the Jacobian matrix
also increases in size with the number of parameters. Thus, when performing large com-
putations using the Jacobian and a large number of parameters, the code implementation
risks thrashing, which is the process of wasting CPU cycles to write and read pages to and

4

from disk. Fortunately, the normal equations matrix has a sparse block structure due to the
lack of interaction among all camera and 3D point parameters other than the camera and
3D point being considered. Thus, significant computational benefits are gained by employ-
ing a sparse variant of the LM algorithm which explicitly takes advantage of the normal
equations zeros pattern by avoiding storing and operating on zero elements.

1.5 sba a C/C++ Package for Sparse Bundle Adjustment

sba is a generic sparse bundle adjustment C/C++ package available under GNU General
Public License and the first and only free software released of its kind. It is generic in the
sense that the user has full control over the definition of parameters describing the cameras
and the 3D structure: In this way sbawill support any camera model with arbitrary parame-
ters [5]. The user must supply sba with an appropriate method of calculating the estimated
feature point reprojections and the proper Jacobian for use in the LM minimization. Tech-
niques for calculating the Jacobian include: by hand, Mathematica or similar software, and
automatic differentiation techniques such as finite differences.

sba exploits the specific sparseness of the Jacobian in the LM algorithm when applied to
bundle adjustment to achieve computational gain. It is capable of handling large recon-
struction problems. As noted in the sba documentation, with a system of 54 cameras, 5207
3D points, and 24609 feature points resulting in 15999 variables to be minimized, sba opti-
mized the system in approximately 7 seconds. This time trial was performed on a machine
running Linux with an Intel P4@1.8Ghz with unoptimized BLAS, a package of basic linear
algebra subprograms [5].

sba requires LAPACK and BLAS for linear algebra functionality and no other 3rd party li-
braries. Downloads and installation instructions for Linux/Unix and Windows are available
at http://users.ics.forth.gr/˜lourakis/sba/index.html#download.

2 Sparse Bundle Adjustment of Stereo Camera Pairs

2.1 Previous Work on Stereo Bundle Adjustment

Considering the high demand for tools processing stereoscopic image sequences, especially
for the step of camera motion estimation, Kurz et. al. develop a new stereo camera model
for bundle adjustment. The stereo camera model was designed to be applicable to a wide
range of cameras in today’s movie production. They first decomposed the camera matrix

5

http://users.ics.forth.gr/~lourakis/sba/index.html#download

A for a metric camera:

A = K
[
I | 0

] [R −RC
0 1

]
where C is the position of camera center, R is the rotation matrix, and K is a calibration
matrix. They further apply this decomposed projection model to a standard stereo camera
setup. Instead of treating left camera and right camera as separate entities, they design
a combined camera model considering the motion shared by both left and right cameras.
Assuming the relative position offset is constant, since the baseline between the cameras is
not changed, they propose two decompositions for the left and the right camera matrices

AL = KL

[
RL | 0

] [R −RC
0 1

]
AR = KR

[
RR | −RRCR

] [R −RC
0 1

]
where subscripts L and R denote parameters that are exclusive to left or right camera [3].

To conduct bundle adjutment, they use LM algorithm with their new stereo camera model
treating camera j in sba as representing a stereo pair such that ~aj hold pair parameters.
They validate their stereo camera model by synthetic experiments on rendered sequences
of images, and on a variety of real-world video sequences. The results of their synthetic
experiments show that their stereo bundle adjustment can process image sequences with
more accuracy and efficiency compared to conventional bundle adjustment [3].

2.2 Stereo Camera Model

We consider a stereo camera model based on dual cameras generally mounted on a rig or
mechanism. Unlike the monocular projective camera model, certain forces directly influ-
ence both cameras of the pair simultaneously: A rotation or translation of the stereo camera
pair or rig alters the position and rotation of both cameras. We define a stereo camera pair
model that considers parameters that apply to the pair and also those that apply to either
the left or right camera individually based on the work of Kurz et. al.

For an accurate representation of a stereo image pair we recommend the use of the follow-
ing pair parameters

• RP , the rotation of the stereo pair given by a rotation matrix. Can be equivalently be
expressed as Euler angles αP , βP , γP or the quaternion qP .

• tP = {xP , yP , zP}, the translation of the pair or rig expressed in the coordinate
system of the 3D scene.

• fxc, fyc, the focal length of the camera expressed in pixels.

6

• u0c, v0c, the principal point of the virtual image for a given camera expressed in
pixels. and the individual camera parameters, subscripted c ∈ {L,R} to specify the
individual parameters for the left and right camera respectively.

– tc = {xc, yc, zc}, translation of the cameras optical center specifying the cam-
eras placement on the rig. We define the optical center of the left camera to be
the measurement center of the stereo pair such that tL = {0, 0, 0} and tR is the
translation of the right camera relative to the left.

– Rc, the rotation matrix for the orientation of the camera. Or equivalently, the
Euler angles αc, βc, γc or the quaternion qAR. Again, the orientation of the left
camera can be defined as the default orientation of the stereo pair such that
αc = 0, βc = 0, γc = 0. The right camera then has a relative rotation to the left
camera.

– s, a scale factor that has the ability to distort the focal length of the right camera
an additional amount, which accounts for any variation in the focus of the right
camera.

• RAR, a rotation matrix for the additional rotation of the right camera relative to the
left camera. This additional roation allows for a slight displacement of the right
camera when surveyors were capturing images. Or equivalently, the Euler angles
αAR, βAR, γAR or the quaternion qAR.

The camera calibration matrix is defined in the same way for the left camera as in the
monocular camera model to map the camera coordinate system to the pixel coordinate
system of the virtual image seen by that camera.

KL =

 fxL 0 u0L
0 fyL v0L
0 0 1

The additional scale factor is included with the focal length such that the camera calibration
matrix for the right camera is adjusted as follows:

KR =

 s ∗ fxR 0 u0R
0 s ∗ fyR v0R
0 0 1

For each camera we also define a 3 × 4 projective matrix which maps the homogeneous
coordinate of a 3D point in the 3D world coordinate system into the camera coordinate
system for each camera.

AL =
[
RLRP | −RLRP tP + tL

]
7

AR =
[
RRRPRAR | RRRPRAR(−tP +RT

PR
T
RtR)

]
The rotations are applied in the following order: any additional rotation of the right camera
that does not move the optical center, the rotation of the pair, and finally the rotation of
the specific camera on the rig. The use of all three rotations allows for minute adjustment
of specific rotations. The pair translation tP , must be rotated into the camera coordinate
system using the composed rotation before being applied for each camera.

The projection of a 3D point bi to feature point pi,k,x onto the virtual image plane of the x
camera in stereo pair k is given by the matrix equation where x ∈ {L,R}

pi,k,x = KxAx

[
bi
1

]

2.3 Bundle Adjustment and Stereo Camera Pairs

Define a set of K stereo camera pairs with associated images Ik,x and projection matrices
Ak,x for 1 ≤ k ≤ Kandx ∈ {L,R} which view n 3D points pi and feature points pi,k,x for
1 ≤ i ≤ n. Bundle adjustment for stereo camera pairs is defined as

min
n∑
i=1

K∑
k=1

∑
x

d(pi,k,x, Ak,xPi)
2

which demonstrates the extension of bundle adjustment to stereo camera pairs mathemati-
cally [2].

2.4 sba and Stereo Camera Pairs

As mentioned earlier, the sba package created by Lourakis is intended to optimize systems
of cameras in which each camera can move independently of each other camera (monoc-
ular vision). However, with stereo vision, cameras are translated as pairs, and therefore
an implementation of the optimization for a stereo model should account for mathematical
relationship between the left and the right camera of a pair. The sba package is flexible
enough to allow for this variation.

Considering potential implementations of the interface between the previous stereo model
and the sba package, one potential intuitive solution is to associate a parameter vector aj
for each camera j in the system as with the monocular model. However, since pairs of
cameras share 3 rotation and 3 translation parameters, the left and right camera parameter

8

would have 6 duplicate parameters which must always be equivalent. This constraint would
be difficult to implement without modifying the sba package to not alter one duplicate pa-
rameter without changing the other. Given that we want to allow the right camera of any
pair to have additional rotation parameters, this would mean the size of parameter vectors
for right and left cameras would be theoretically different and would also require special
compensation within sba. Therefore, we consider another solution.

Our proposed solution is to use the parameter vector ak to represent all of the variable
parameters for a pair k of cameras. This implementation does not include duplicate pa-
rameters, nor does it theoretically require camera parameter vectors of varying size. The
visibility mask is defined as a vector indicating which camera pairs can see which 3D points
and Q(ak, bi) = x̂ik is defined as the projection of 3D point i onto both cameras in a pair
k. Thus the number parameters for our measurement vector is |xik| = 4; one feature point
corresponding to each camera in the pair. For the visibility mask, we say that a pair k can
see a 3D point i if at least one of the cameras of the pair k has a feature point projected
from the 3D point i. In this case, the corresponding i, k entry in the visibility mask is set to
1.

However, we are required to consider the case in which the left camera of a pair can see
a 3D point, but the right camera cannot (or vice versa). In the previous case, we set the
missing feature point of the right camera to some default value, such as -1. Thus, in the
case that left camera of a pair k can see 3D point i, but the right camera cannot, we set
the corresponding measurement vector to xi,k = {xL, yL,−1,−1}. This structure for xi,k
creates a problem for our projective function Q. The problem is non-existent with monoc-
ular vision, as the visibility mask alone was sufficient to determine whether the projection
function should be called for a given camera, but in the stereo model, the visibility mask is
not sufficient because it does not indicate whether one or both of the cameras can see that
3D point. To solve this problem, we create a C++ object to keep track of special cases in
which one camera of a pair cannot see a 3D point, but the pair itself can. This object is
passed into the projective function, which returns -1, -1 for the entry in x̂ for the camera in
the pair with the occluded 3D point. Since both x and x̂ to have the same default value for
missing feature points, it will have no effect on error calculation. The function to compute
the Jacobian similarly accounts for these special cases, and the entries in the Jacobian for
the corresponding 3D point and camera are explicitly set to 0 to indicate no relationship.

2.5 Lens Distortion Model

Although the pinhole camera model provides a good mathematical model for describing
the aperture of practical camera, its simplification of the aperture as an infinitesimally small
point removes the effects of lens distortion. For a more accurate model of our problem, we
account for lens distortion in our bundle adjustment process. For a 2D point on the image,

9

lens distortion is expressed as

ud = u+ hu(u, v)

vd = v + hv(u, v)

where u and v are distortion-free image coordinates, ud and vd are corresponding distorted
coordinates. Radial distortion is caused by the curvature of the lens and tangential distor-
tion occurs when lenses are not perfectly parallel to the image plane. The Brown-Conrady
model is a very popular model, which uses power series to describe both radial and tangen-
tial distortion. Thus distorted image points are

ud = u(1 +K1r
2 +K2r

4 + ...) + P1(r
2 + 2u2 + 2P2uv)

vd = v(1 +K1r
2 +K2r

4 + ...) + P1(r
2 + 2v2 + 2P2uv)

where r is the distance from principal point (u0, v0) to the given distortion-free point (u, v),
Ki is a radial distortion parameter and Pi is a tangential distortion parameter. Since the first
two terms r2 and r4 are predominant, we include two parameters to describe each distortion
in our model.

For our convenience, we utilize pre-existing functions to correct the lens distortion at the
beginning of bundle adjustment.The distortion-correcting function takes distortion param-
eters from the input file, estimates undistortion parameters with Levenberg-Marquardt al-
gorithm and uses the estimated parameters to correct the distorted points. Since the pre-
existing functions calculate with units in meters, we need to convert our feature points from
pixels to meters

(umeter, vmeter) = (upixel, vpixel)/(fu, fv)− (u0, v0)

(upixel, vpixel) = ((umeter, vmeter) + (u0, v0))(fu, fv)

where (fu, fv) is the focal length and (u0, v0) is the principal points. We chose not to
optimize the lens distortion parameters for each camera in order to reduce the size of our
parameter matrix p and the number of feature points required for optimization, and as a
result decided to undistort our feature points initially with the method described above and
store the undistorted values in the measurement x before computing the bundle adjustment.

3 Results

We fabricated a perfect data set with 4 pairs of cameras, 12 3D points, and 75 feature points
using Mathematica to accurately determine the feature point location for a defined set of
cameras and 3D points. To generate a baseline data set on which to test our minimization
implementation, we used Mathematica to calculate the location of feature points in our
synthetic images. We defined 12 points in 3D space along with four camera pairs rotated to

10

view some or all of the 3D points. We had 10 variable parameters for each pair of cameras:
3 for translation, 3 for rotation, 3 for additional rotation applied to the right camera, and
a scale factor. Using the projection function defined in Section 2.1 for use with our stereo
camera model, we used Mathematica to calculate the feature points of the 3D points for
each virtual image of the 8 cameras. The mean reprojection error (calculated by finding the
mean Euclidean distance of feature points and their reprojections) on this data set was .003
pixels before running the optimization. After optimization, the mean reprojection error
was reduced to .0028, which indicates that our optimization program does not move the
local minimum once one is found. This data set required virtually no computation time to
optimize.

Next, we generated an imperfect data set by reducing the precision of camera and 3D
points parameters in our perfect data set while the locations of the feature points were left
unchanged. This would indicate the scenario in which the measurements of the known
variables are precise. The initial reprojection error for this data set was 45.88 pixels, and
our optimization program decreased the reprojection error to .0028 pixels, the same as it
was in the perfect data set. However, the locations of the cameras and 3D points differ
slightly from the perfect data set, which indicate that there are multiple local minima in the
error function. This data set also required virtually no processing time.

We applied our optimization to a real data set with 71 pairs of cameras, 64 3D points, and
948 feature points. It is important to note that the known measurements (the feature points)
were imperfect in this data from lens distortion and human measurement error. To correct
for the lens distortion, we use the Brown-Conrady model with three terms to approximate
the radial distortion component. This was implemented as described in Section 2.4. The
initial reprojection error in this data set was 4.95. After sba optimization, which took
13.14 seconds, the reprojection error decreased to 3.92, which is a 20.8% decrease. It is
important to note that this data had also already been optimized by a LM minimization
algorithm. This indicates that our optimization improved upon a previously optimized data
set.

To simulate more realistic conditions, we reset the positions of the camera pairs from the
previous data set to be their (pre-optimized) estimated positions. Also, we rounded the
Euler angles of the pair to the nearest k ∗ π

4
for all integers k, set the additional rotation

parameters (Euler angles) to 0, and set the scale factor to 1. This situation represents a
scenario in which camera pair parameters are estimated. The initial reprojection error for
this set was 143.4 pixels, and the optimization reduced this value to 3.92 pixels in 13.60
seconds.

Finally, to mimic realistic data we tested our implementation on a data set with both altered
locations and orientations of the cameras as above and also truncated locations of 3D points
to the nearest tenth of a meter. The initial reprojection error for this set was 142.29 pixels,
and the optimization reduced this value to 3.92 pixels. The process took 12.64 seconds.

A summary table of the initial and resulting mean projection error and timings can be found

11

in fig. 3.

4 Conclusion and Future Work

Both the effectiveness of the optimization and the speed of the computation indicate that
our design has practical applications to 3D reconstruction. However, there some improve-
ments that can be made to our design.

First, there is an opportunity to improve the Jacobian evaluation. For the projection func-
tion we define for the stereo camera model of our implementation, we use Mathematica to
analytically calculate the Jacobian required by sba. With the large number of parameters
and terms in this projection function the Jacobian has approximately 50,000 terms in the
matrix. Improvements in calculations using the Jacobian by sba can be achieved by simpli-
fying the equations used to describe the Jacobian of a specific camera-point combination
to group like terms and computations. Also, parallelism can be applied to the execution of
the Jacobian function to improve computation speed. Lourakis suggests use with Parallel
Linear Algebra for Scalable Multi-core Architecture (PLASMA) [5]. This example of data
parallelism could potentially be optimized by other parallelism packages as well.

Second, the design of our interface between sba and the stereo model implements an addi-
tional visibility mask to account for left-right visibility issues, as mentioned in Section 2.3.
Therefore, it would be desirable to refine the design such that the additional visibility mask
is not required, thus removing redundant computation even though this involves changing
how the projective and Jacobian functions are executed by sba.

12

Figure 1: Schematic illustration of n = 7 3D points projecting onto m = 3 images used in
bundle adjustment [5].

Figure 2: Stereo camera pair visualization of 3D cube from 3 separate pair translations and
rotations. The relative position and orientation of the camera pairs remains constant. Solid
lines are the projection of the 3D points pj onto the left stereo camera and dashed lines are
the projection onto the right stereo camera [3].

Data Set Initial MRE Final MRE
Small, accurate 0.00302 0.00286
Small, approximate 45.8836 0.00286
Large, optimized 4.94586 3.91972
Large, approx. cameras 143.412 3.91972
Large, approx. cameras and 3D points 142.291 3.91972

Figure 3: Mean Reprojection Error (MRE) results of stereo camera pair SBA minimization
on a series of data sets ranging in size and 3D point and camera location accuracy. The
small files have precise feature point location whereas the larger data sets have imperfect
feature point measurements.

13

References

[1] H. Gavin, “The Levenberg-Marquardt method for nonlinear least squares
curve-fitting problems”, Department of Civil and Environmental En-
gineering, Duke University, September 24, 2013. [Online] Available:
http://people.duke.edu/˜hpgavin/ce281/lm.pdf

[2] P. Hillman,“White paper: Camera calibration and stereo vi-
sion, Square Eyes Software, October 2005”. [Online] Available:
http://www.peterhillman.org.uk/downloads/whitepapers/calibr ation.pdf

[3] C. Kurz, T. Thormahlen, and H. Seidel, “Bundle Adjustment for Stereoscopic
3D”, Max Planck Institute for Computer Science (MPII), 2011. [Online] Available:
http://www.mpi-inf.mpg.de/˜ckurz/papers/Kurz MIRAGE2011.pdf

[4] M. Lourakis, “A brief description of the levenberg-marquardt algorithm imple-
mented by levmar”, Institute of Computer Science, Foundation for Research
and Technology - Hellas (FORTH), February 11, 2005. [Online]. Available:
http://users.ics.forth.gr/˜ lourakis/ levmar/levmar.pdf

[5] M. Lourakis and A. A. Argyros, “SBA: a software package for generic sparse bundle
adjustment”, ACM Trans. Math. Softw. 36, 1, Article 2 (March 2009). [Online]
Available: http://users.ics.forth.gr/˜lourakis/sba/sba-toms.pdf

[6] A. Majumder, “The Pinhole Camera”, University of Califormia, Irvine, Feb. 2010.
[Online] Available: http://www.ics.uci.edu/˜majumder/vispercep/cameracalib.pdf

[7] L. Ming, “Correspondence analysis between the image formation pipelines of graph-
ics and vision,”Max-Planck-Institute for Computer Science. [Online] Available:
http://campar.in.tum.de/twiki/pub/Chair/TeachingWs05ComputerVision/Correspon
denceAnalysisBetweenTheImageFormationPipelinesOfGraphicsAnd-
Vision Ming.pdf

[8] B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon, “Bundle adjustment a
modern synthesis” Springer Berlin Heidelberg, Jan. 2000. [Online] Available:
http://www.cs.jhu.edu/˜misha/ReadingSeminar/Papers/Triggs 00.pdf

[9] Z. Zhang, “A flexible new technique for camera calibration”, IEEE Trans. Pattern
Anal. Mach. Intell., vol.22, no.11, pp.1330 1334, Nov. 2000. [Online]. Available:
http://dx.doi.org/10.1109/34.888718

14

	Introduction
	Projective Camera Model
	Bundle Adjustment
	Levenberg-Marquardt Algorithm
	Sparse Bundle Adjustment
	sba a C/C++ Package for Sparse Bundle Adjustment

	Sparse Bundle Adjustment of Stereo Camera Pairs
	Previous Work on Stereo Bundle Adjustment
	Stereo Camera Model
	Bundle Adjustment and Stereo Camera Pairs
	sba and Stereo Camera Pairs
	Lens Distortion Model

	Results
	Conclusion and Future Work

