
Problem A - EPIC

Professor Plum likes the idea of visiting EPIC for MICS 2014. He wants you to write a program to generate ASCII

art printing “EPIC” vertically for a sign to tape to the back of the van on the trip. Since he does not know the

dimensions of the sign, he wants your program to take as input a positive integer scaling factor.

101050 × 5010

3315 × 153

2210 × 102

115 × 51

Blank Lines

Between Letters

Line Width of Letters

(# characters)

Letter Dimension
(# characters × # characters)

Scaling Factor

A scaling factor of 1 would produce: A scaling factor of 2 would produce:

INPUT SPECIFICATION.

The input contains a single line with a positive

integer scaling factor.

OUTPUT SPECIFICATION.

The output should contain the ASCII art for the sign

corresponding to the scaling factor specified by the

input. NOTE: Except for the blank line(s)

separating EPIC letters, each line should be the

same length by padding shorter lines with blanks.

EEEEE

E

EEEE

E

EEEEE

PPPPP

P P

PPPPP

P

P

IIIII

 I

 I

 I

IIIII

CCCCC

C

C

C

CCCCC

EEEEEEEEEE

EEEEEEEEEE

EE

EE

EEEEEEEEEE

EEEEEEEEEE

EE

EE

EEEEEEEEEE

EEEEEEEEEE

PPPPPPPPPP

PPPPPPPPPP

PP PP

PP PP

PPPPPPPPPP

PPPPPPPPPP

PP

PP

PP

PP

IIIIIIIIII

IIIIIIIIII

 II

 II

 II

 II

IIIIIIIIII

IIIIIIIIII

CCCCCCCCCC

CCCCCCCCCC

CC

CC

CC

CC

CC

CC

CCCCCCCCCC

CCCCCCCCCC

Problem B - Even-Odd Sort

Even Professor Plum knows that he is a little odd. Thus, on a recent test he had his students write the following

“even-odd sort” to arrange positive integers such that:

� smallest even integer is at index 0,

� smallest odd integer is at index 1,

� second smallest even integer is at index 2,

� second smallest odd integer is at index 3,

� etc.

� pattern continues until either the even or odd numbers run out, then the remain values are in ascending order.

INPUT SPECIFICATION.

The input consists of no more than 1000 positive integers with each integer on a line by itself. The last line in the

file contains the integer 0 which is NOT to be included in the sort.

OUTPUT SPECIFICATION.

The output consists of the positive input values rearranged in “even-odd” sorted order as defined above. Each

integer should be on a line by itself.

Sample Input

8

2

11

6

3

6

5

13

4

7

1

9

0

Output for the Sample Input

2

1

4

3

6

5

6

7

8

9

11

13

Problem C - Word-Find Solver
The Pi-rats Restaurant is Professor Plums favorite restaurant because the placemats always have a word-find puzzle

to entertain his kids while he reads the newspaper. Occasionally, his kids ask for help which cuts into his reading

time, so he has asked the Pi-rat Restaurant to post the word-find puzzle on their web-site. Now, he wants a program

to find the words in the puzzle.

INPUT SPECIFICATION.

The first line of input will specify the length (in characters) of the sides of the letter matrix (the matrix of letters will

be square). The length, l, will be in the range 1 <= l <= 100. The next l lines of input will be the matrix itself, each

line will contain l uppercase letters.

A list of words will follow. Each word will be on a line by itself; there will be 100 or fewer words. Each word will

be 100 or fewer characters long, and will only contain uppercase letters.

The final line of input will contain a single zero character.

OUTPUT SPECIFICATION.

Your program should attempt to find each word from the word list in the puzzle. A word is "found'' if all the

characters in the word can be traced in a single (unidirectional) horizontal, vertical, or diagonal line in the letter

matrix. Words may not "wrap around" the edges of the puzzle, but horizontal, vertical and diagonal words may be in

reverse order ("backwards"), i.e., all eight directions from beginning to end like a “normal” word-find puzzle.

Each word should produce one line of output. For each word that is found, your program should print the

coordinates of its first and last letters in the matrix on a single line, separated by a single space. Coordinates are pairs

of comma-separated integers (indexed from 1), where the first integer specifies the row number and the second

integer specifies the column number. If a word is not found, the string "Not found" should be output instead of a

pair of coordinates. Each word from the input will be in the puzzle at most once.

Sample Input

5

ECEEE

ESEEE

DISKE

EDEEE

EEEEE

DISC

DISK

DICE

0

Output for the Sample Input

DISC: (4,2) to (1,2)

DISK: (3,1) to (3,4)

DICE: Not found

Problem D — BST Maximum Index

Trees are particularly annoying to Professor Plum. He likes to fly kites in the center of campus, but the wind keeps

blowing his kites into the trees. Professor Plum has spent enough time observing trees to notice that some are more

even than others. Some have branches evenly spread throughout the tree; others, though, seem weighted down on

one side with a disproportionate amount of branches.

Professor Plum often teaches Data Structures so he knows that the same thing can happen in binary search trees

(BSTs). Recall that for each node in a Binary Search Tree (BST) all values in the left-subtree are < the node and all

values in the right-subtree are > the node. The shape of a BST depends on the order in which values are added. For

example, if we start with an empty BST and insert the sequence of values: 50, 70, 30, 80, 34, 32, 9, 47, 18, then we

get the BST:

50

30 70

9 34

32 47

80

18

[0]

[1]

[3] [4] [6]

[2]

[8]
[9] [10]

Typically, Professor Plum uses nodes with left and right “pointers/references” to implement a BST. However, we

could store a BST in an array such that:

� the root is at index 0

� a node at index i would have its left child at index 2 * i + 1, and

� a node at index i would have its right child at index 2 * i + 2.

Notice that the above tree is annotated with the indices in square-brackets. e.g., 34 at index “[4]”.

The above BST stored in an array (leaving blank unused slots) would be:

 50

 20 7 17 1 21 8 1811 2 9 1912 3 10 0 13 4 14 5 15 6 16

30 70 9 34 80 18 32 47 . . .

Professor Plum likes the idea of using an array to store a BST instead of a linked implementation, but he is

concerned about the array’s size. He wants you to write a program to determine the largest index value needed for a

given sequence of BST values. For the above input sequence, the program should report a maximun index of 10.

INPUT SPECIFICATION.

Each line of data consists of a sequence of positive integers to be stored in a BST with each sequence being

terminated by the value 0. A line with a single 0 value indicates that there is no more data.

OUTPUT SPECIFICATION.

The output for each BST should appear in the same order as their respective input cases. The output should be in the

format “BST c has a maximum index of i”, where c is the case number starting at 1 and i is the maximum

index of the BST stored in an array.

Sample Input Output for the Sample Input

50 70 30 80 34 32 9 47 18 5 0

3 20 10 5 8 30 0

0

BST 1 has a maximum index of 10

BST 2 has a maximum index of 24

Problem E — Hardest Hangman

Professor Plums does not like to fly, so family vacations are always by car. To entertain his kids they often play the

game hangman as they drive. You are probably familiar with the game Hangman, but the “standard” rules are as

follows:

1. One player (Professor Plum) chooses a secret word, then writes out a number of dashes equal to the word length.

2. The other player (one of his kids) begins guessing letters. Whenever she guesses a letter contained in the hidden

 word, the first player reveals all instances of that letter in the word. Otherwise, the guess is wrong.

3. The game ends when either all the letters in the word have been revealed, or when the guesser has run out of

 guesses.

As his kids have gotten older Professor Plum needs to select more challenging words, but does not want to haul a thick

dictionary on vacation. Thus, he wants you to write a program to determine the “hardest” words in the dictionary for each

length word in the dictionary. The “hardest” word of a given length is defined as follows:

� analysis all the words in the dictionary to determine the overall frequencies for all 26 letters.

� the difficulty of a word is the sum of frequencies for each of it’s letters. Suppose for example that an analysis of all

dictionary words found frequencies of a’s to be 8.167%, h’s to be 6.094%, and t’s to be 9.056%, then the word “that”

would have a sum of frequencies of 32.373%. The “hardest” word is defined to be the word with the smallest sum of

letter frequencies. If two words have equal “difficulty,” then the word that’s later alphabetically is harder.

WARNING: To avoid floating-point round off errors (and incorrect results), DON’T actually compute the

frequency of each letter by (count of the letter x in all dictionary words) / (count of all letters in all dictionary words).

Since the (count of all letters in all dictionary words) is the same for each letter, just use the (count of the letter x in

all dictionary words) as an exact indication of letter x’s overall frequency.

INPUT SPECIFICATION.

The input consists of dictionary words with each word on a line by itself. The last line in the file contains a single

asterisk “*”. No word will exceed 35 letters in length and there will be less than 150,000 dictionary words.

OUTPUT SPECIFICATION.

One line of output should appear for word lengths of 1 up to the length of the longest dictionary word. Each line of

output should start with “Hardest word of length c:“, where c is a number. The rest of the line should be

a single-space separator followed by either: the lower-case version of the hardest word, or the string “No word of

that length is in the dictionary! “.

Sample Input

a

bat

eel

i

tall

teal

you

zip

*

Output for the Sample Input

Hardest word of length 1: i

Hardest word of length 2: No word of that length is in the dictionary!

Hardest word of length 3: you

Hardest word of length 4: teal

Problem F — Highly Recursive Definition
Professor Plums likes recursion, but his students typically are confused by it. During a recent faculty meeting his

mind wandered, and he invented the following recursive mathematical function, G(n):

G(n) = n for all value of n ≤ 0

G(n) = G(n-6) + G(n-4) + G(n-2) for all values of n > 0.

He wants you to write a program to compute values of the function G(n).

INPUT SPECIFICATION.

The input consists of integer values of n with each integer on a line by itself. The last line in the file contains an

integer 0 which is NOT to be included in the output eventhough G(0) is 0. All the integer values of n and G(n) will

fit in a 64-bit integer variable.

OUTPUT SPECIFICATION.

Each line of input (except the 0) produces a line of output formatted as “G(n) = x“, where n is the input number

and x is the G(n) function value. (NOTE: there is one space on each side of the equal sign.)

Sample Input

10

-5

100

20

125

0

Output for the Sample Input

G(10) = -50

G(-5) = -5

G(100) = -40699755505816

G(20) = -1056

G(125) = -181604155310272259

