

A Location-Based Service Using a Server-Side

Geographical Database

AbdElRahman Ahmed El-Said, Wen-Chen Hu, and Fatima El Jamiy

Department of Computer Science

University of North Dakota

Grand Forks, ND 58202

abdelrahman.elsaid@und.edu, wenchen@cs.und.edu,

eljamiyfatima@gmail.com

Naima Kaabouch

Department of Electrical Engineering

University of North Dakota

Grand Forks, ND 58202

naima.kaabouch@engr.und.edu

Abstract

One of the most popular apps is location-based services (LBSs) such as navigation,

locating local events, and checking location-based advertisements. However, building an

LBS is not a simple task because it involves various subjects and techniques like mobile

computing, databases, and security and privacy. One of the major LBS components is

geographical databases, which are used to store geographic data like locations and

functions (such as restaurants and gas stations). A geographical database is usually hosted

on a server because of its huge size and should facilitate geographic data storage,

indexing, searching, and matching. This paper tries to mitigate the high difficulty of LBS

construction by showing the construction step by step with a focus on connecting a

mobile device to a server-side geographical database. After reading this article, readers

will be able to build an LBS prototype for their research or applications.

1

1 Introduction

Smartphones are the most popular electronic devices nowadays. People use them to

perform daily activities, like managing messages and emails, browsing the Internet, and

watching video, anywhere and anytime. One of the popular apps is location-based service

(LBS), which is a service based on the geographical position of a mobile handheld

device. One of the LBS examples is to find a nearby ethnic restaurant by using a

smartphone. According to the market research reports, (i) the global LBSs market was

valued at $11,994 million in 2016, and is expected to reach $61,897 million by 2022,

supported by a growth rate of 26.6% (Malani, 2017), and (ii) the growing trend for the

integration of location-based search with social networking websites will post a growth

rate of close to 40% for the global LBS market during 2017-2021 (Technavio, 2017).

They show the high importance and popularity of LBSs. However, building an LBS is not

a simple task. This research tries to help developers by showing how to build an LBS.

Building a location-based system (LBS) is not easy because various disciplines and

subjects are involved. This pper tries to mitigate the high complication and difficulty by

showing how to build an LBS from the ground up with a focus on connecting the mobile

devices to a server-side geographical database. The five major components of an LBS

system and our methods for implementing them are listed below:

• Mobile handheld devices: Android emulator (AVD), instead of a smartphone, is

used for development.

• Positioning systems like satellites: The DDMS (Dalvik Debug Monitor Server) of

an AVD is employed to send the mock locations, instead of using actual road

testing.

• Mobile and wireless networks: URL connection, provided by Android, is used to

connect the emulator to the service provider.

• Service providers: The LBS is to show a direction between the user and the

nearest participant.

• Geographical databases: A small geographical database is used by the service

provider.

Readers, who are interested in LBS research and applications, can use this paper to build

their LBS prototypes. Based on the prototypes, they can realize their LBS research and

show the advantages of their proposed methods.

The rest of this paper is organized as follows. Section 2 introduces related software, tools,

and services including (i) Android and Android Studio, (ii) MySQL and MySQL

Workbench, and (iii) various location-based services. The proposed LBS app is

introduced in Section 3, which includes three sub-sections: (i) the proposed system, (ii)

the server-side geographical database used by the proposed system, and (iii) the result

screenshots. Section 4 explains how to build the proposed system including three sub-

section: (i) Android server connection, (ii) client-side code, and (iii) server-side code.

The final section summarizes this study and gives possible LBS projects.

2

2 Related Software, Tools, and Services

This section introduces the software and tools used to build the proposed system

including (i) Android and Android Studio and (ii) MySQL databases and MySQL

Workbench. In addition, various location-based services are listed to give readers an idea

what the market trend of LBSs is.

2.1 Android and Android Studio

Android (Android, n.d.a) is the most popular mobile operating system as it is used by

more than 80% of smartphones in 2017 (IDC, 2018). It is a software stack based on the

Linux kernel for mobile devices that includes an operating system, middleware,

emulators, and various key applications like phone, browser, and contacts. It was initially

developed by Android, Inc., which was acquired by Google, Inc. in 2005. Since then,

Android has been revised and enhanced significantly and constantly for the ever-

changing newer features of mobile devices. In the past, Android app development in

Eclipse with ADT (Android Development Tools) was highly recommended. Since 2014,

Android Studio (Android, n.d.b) became the primary IDE (Integrated Development

Environment) for native Android application development. It is freely available under the

Apache License 2.0 based on JetBrains’ IntelliJ IDEA software. Figure 1 shows a user

interface of Android Studio and its major functions are listed as follows:

• Attributes, providing controls for the selected view’s attributes,

• Design editor, displaying the layout in both the design and blueprint views,

• Gradle console, a screen for managing the automated build system for the

Android source code,

• Logcat, a screen showing the logs generated from the running programs,

• Menu bar, providing the essential functions of Android Studio,

• Palette, providing a list of widgets and layouts that can be dragged into the layout

in the editor,

• Project structure, showing the view hierarchy of the project, and

• Toolbar, providing buttons to configure the layout appearance in the editor and to

change some layout attributes.

3

Figure 1: A User Interface of Android Studio.

2.2 MySQL Databases and MySQL Workbench

The proposed geographical database uses MySQL (MySQL, n.d.a), an open-source

relational database management system (RDBMS). It is supported by a company named

MySQL AB, which is a division of Oracle Corporation now. MySQL is one of the major

components of LAMP (Linux, Apache, MySQL, and PHP/Perl/Python) technology for

website construction. It is reliable because tens of thousands of websites have used

MySQL without incidences and, even better, it is free because it is open source. In

addition, most programming languages like PHP and Perl are allowed to embed SQL

(Structured Query Language) commands in their programs for adding, accessing, and

processing data in MySQL. This research uses Android Java to connect to a server-side

PHP program with embedded SQL commands to access the geographical database using

MySQL. Other than using MySQL text user interface to manage MySQL, MySQL

Workbench (MySQL, n.d.b) is a database IDE (Integrated Development Environment)

for the MySQL database systems. It allows a DBA or developer to visually design,

develop, manage, and maintain databases. Figure 2 shows a user interface of the MySQL

Workbench and its major components are introduced as follows:

• Hide/show panels, changing the layout of the Workbench,

• Menu bar, providing the essential functions of MySQL Workbench,

• Navigator, showing the schema of the user,

• Object information, displaying the details of the object,

• Output, containing the log of executed commands,

• Result, showing output from the SQL commands in the query panel,

• SQL additions, including context help and SQL snippets for saving SQL code,

• SQL query panel, allowing users to enter SQL commands, and

• Toolbar, providing buttons to quickly manage the SQL commands in the query

panel.

Project

structure

Gradle

console
Logcat

Attributes

Palette

Design

editor

Toolbar

Menu bar

4

Figure 1: The Workflow of the Proposed System.

Figure 2: A User Interface of MySQL Workbench.

2.3 Location-Based Services (LBSs)

Various LBSs are available on the app stores and most major IT corporations provide

their own LBSs. This sub-section introduces some of them, so readers can get a sense of

what LBSs can affect our daily lives and implement their own LBSs based on this

research:

• Foursquare (https://foursquare.com/), recommending interesting places like coffee

houses, restaurants, and stores to users based on their previous browsing history,

purchases, or check-in history.

• Uber (https://www.uber.com/), a form of sharing economy and of which major

function is ridesharing among its users.

• Google Maps (https://maps.google.com/), a web mapping service developed by

Google. Other than the traditional map services like street maps and route

planning for traveling, it also provides various recommendations such as

restaurants and hotels.

• Bing Maps (https://www.bing.com/maps/), provided by Microsoft including the

features of directions, traffic information, and people, business, and location

search.

• iOS – Maps (https://www.apple.com/ios/maps/), a map or location-based service

provided by Apple, Inc. including the features of indoor maps, navigation, and

proactive suggestions.

• AutoNavi (https://www.autonavi.com/), a provider of digital map, navigation, and

LBS in China offering products with features such as route planning, travel

navigation, and offline maps from the Alibaba Group.

Navigator

Toolbar

SQL query

panel

Output

SQL

additions

Result

Menu bar

Object

information

Hide/show

panels

Toolbar

5

3 Design of the Proposed Location-Based Service (LBS)

Various LBSs can be found from the app stores. Examples of the services include finding

nearby ethnic restaurants, navigation, and recommending interesting places or events.

Other than the app user, most participants of the services are static or fixed; i.e., they, like

the restaurants and concerts, are not mobile. This research investigates a kind of LBSs of

which the participants are mobile. The potential of this kind of LBSs are great, but at the

same time, their realization is different from the one of the traditional LBSs. This section

introduces the design of the proposed system and implementation of the system will be

given in the next section.

3.1 The Proposed System

The proposed location-based service is to draw a direction between the user and the

nearest mobile participant. The major difference between the proposed system and other

LBS systems is the participants of the former system are mobile. For example, a student

is looking for his/her friends to borrow a calculator right before an exam. Traditional way

to solve this problem is to find the nearest place where his/her friends live. However, the

problem is his/her friends may be on the move and their locations may be different from

time to time. The services would not be effective if the mobility feature is not considered.

One way to keep track of the participants’ locations is having the participants send their

locations to the server once they move and the locations are saved in a server-side

geographical database. The service then retrieves the current locations from the database

and draws a direction between the user and the nearest participant. The following steps

show how the proposed service works:

1. Participants sign up the service.

2. Entries are created in tables of a server-side geographical database.

3. Participants send their locations to the server if their locations change.

4. The database is updated according to the received location data.

5. A user submits his/her current location and a request to find a nearest participant.

6. Based on the requester’s current location and the location data in the geographical

database, the service draws a direction between the user and the nearest

participant.

Figure 3 gives another way to explain the proposed service by giving a workflow of the

proposed system. It includes the following four steps: (a) participants sending their

updated location data to the sever, (b) the user looking for a nearest participant, (c) the

server finding the nearest participant according to the locations of user and participants,

and (d) drawing a route between the user and the nearest participant.

6

Figure 3: Workflow of the Proposed System.

3.2 The Proposed Server-Side Geographical Database

Geographical databases are databases storing geographic data including spatial data, like

heights and locations, and attribute data like names such as McDonalds and functions

such as restaurant. They are usually provided by a third party such as GeoNames (n.d.)

because huge space is needed to store the data. This section proposes a small

geographical database for facilitating geographic data storage, indexing, searching, and

matching. This research uses a server-side MySQL (n.d.a) database to host the

geographic data with an emphasis on mobile users. The database schema is shown in

Table 1. It is made as simple as possible because the focus is on how to connect the

mobile client to a server-side geographical database. The major difference between the

proposed database and traditional databases is the entity could be mobile; i.e., its location

could change from time to time. It consists of two tables: entities and LBS tables. The

table entities include a column time, which is the time when the location is saved. The

duration of the entity at the current location can therefore be found as the difference

between the current time and the saved time. One of the functions of the duration is to

check whether the location is valid. For example, if the duration of the location is more

than a week, then the service may assume the mobile location is not valid. The other table

LBS is used to find the participants of an instance of the service. One participant may join

more than one instance of the service.

PID Name Function Latitude Longitude Time

1 Poke Mon male 47° 55’ 31” N 97° 2’ 57” W
2018-02-09

21:21:40

2 Italian Moon restaurant 47° 55’ 40” N 97° 1’ 60” W
2010-10-29

06:28:42

3 Super Mario male 47° 55’ 31” N 97° 1’ 52” W
2017-05-28

10:51:30

4 GI Jane female 47° 55’ 60” N 97° 1’ 98” W
2018-02-29

11:18:42

5 Valley Dairy gas station 47° 55’ 33” N 97° 2’ 53” W
2017-03-37

06:21:43

6 Turtle River park 47° 54’ 72” N 97° 1’ 70” W
1991-12-20

04:40:42

7 GF Bus transportation 47° 55’ 51” N 97° 1’ 54” W
2018-02-54

10:33:21

8
Florida

Sunshine

farmers’

market
47° 55’ 31” N 97° 1’ 97” W

2018-06-29

19:21:44

LBS PID

1 1

12 3

2 4

1 32

4 120

2 3

1 3

… …

(b)

Server finding

the nearest

participant based

on a database

Participants

sending updated

locations to

server

User requesting

finding a nearest

participant

Drawing a route

between the user

and the nearest

participant

(a) (b) (c) (d)

7

… … … … … …

(a)

Table 1: Sample Values of the Proposed Geographical Database Schema Including (a)

entities Table and (b) LBS Table.

3.3 The Result Screenshots

This sub-section shows some of the screenshots from this service. It is to help readers

understand what the service can achieve before they study the implementation details

given in the next section. Instead of doing actual road tests, this research uses Android

AVD (Android Virtual Device) to simulate the testing. Figure 4 shows three screenshots

from this app. Figure 4.a shows the app in the Android Launcher, Figure 4.b is the control

panel associated with the emulator, and Figure 4.c is the extended controls after clicking

the item at the bottom of the control panel. The extended controls include a location

function, which allows users to enter location data including latitude, longitude, and

attitude and submit it to the app. Using this function is similar to the app receiving

location data from the GPS (Global Positioning System).

(a) (b) (c)

Figure 4: (a) The Proposed App Shown in the Android Launcher, (b) the Control Panel,

and (c) the Extended Controls.

Figure 5 shows an example of an application of this service, where the user is marked in

Figure 5.a, Figure 5.b shows two more participants joining the service, and a direction

between the user and the nearest participant is drawn in Figure 5.c. Another example is

given in Figure 6, which is similar to the one in Figure 5, but with five participants.

8

(a) (b) (c)

Figure 5: (a) User Being Marked, (b) Two More Participants Joining the Service, (c)

Direction Between the User and the Nearest Participant.

(a) (b) (c)

Figure 6: Another Example: (a) User Being Marked, (b) Five More Participants Joining

the Service, and (c) Direction Between the User and the Nearest Participant.

4 Implementation of the Proposed System

Design of the proposed system is given in the previous section and this section discusses

the implementation part. Several programming languages are used in this implementation

where Android Java is mainly used on the client-side for direction drawing, and PHP and

Python are used on the server-side for accessing the geographical database and calling

Google Maps Directions API (Application Programming Interface) (Google, n.d.) to find

the shortest distance. Figure 7 shows a workflow of the implementation of the proposed

system including (i) a user requesting a direction between him/her and the nearest

participant, (ii) location data of the participants retrieved from the geographical database,

(iii) the distances between the user and the participants calculated by using Google Maps

Directions API, (iv) the data of the nearest participant sent to the user, and (v) the shortest

direction drawn by using Google Directions API. Brief discussion of the implementation

is given in this section. Further references for the related implementation can be found

from the articles by the authors (Hu, 2018; Hu, Kaabouch, Yang, & Wang, 2014; Hu,

Kaabouch, & Yang, 2014).

9

Figure 7: Workflow of the Proposed System Implementation.

4.1 Android Server Connection

There are a couple of ways allowing Android devices to connect to the servers. Three of

the classes for the connections are given as follows:

• URLConnection, which represents a communications link between the

application and a URL,

• HttpClient, which is an interface for an HTTP client and was deprecated in

android 5.1 and is removed from the Android SDK (Software Development Kit)

in Android 6.0, and

• HttpURLConnection, which is the preferred method to connect to a remote

server through HTTP.

This research connects a mobile client to the server via the HttpURLConnection class.

The connection allows the client to send its location data to the server and receive the

information in a JSON format the server offers. It is also used to connect to the Google

Maps Directions server to request a route between the user and the nearest participant.

Program 1 shows a code snippet used to connect to the server and receive data from the

server.

private ArrayList<LatLng> downloadUrl(LatLng user_location) {

 HttpURLConnection urlConnection = null;

 URL url = new URL("ADDRESS_TO_SERVICE_SERVER_WITH_DEVICE_LOCATION");

 // Creating an HTTP connection to communicate with the URL

 urlConnection = (HttpURLConnection) url.openConnection();

 // Connecting to the URL

 urlConnection.connect();

 // Reading data from the URL

 while((line = br.readLine()) != null) {

 String[] latlong = line.split(",");

 double latitude = Double.parseDouble(latlong[0]);

 double longitude = Double.parseDouble(latlong[1]);

 LatLng loc = new LatLng(latitude, longitude);

 data.add(loc);

}

Program 1: Code Snippet for Server Connection.

Direction

Markers Locations

Shortest

distance
Shortest
distance

Locations

Shortest

distance Locations

Locations Locations Locations Mobile

devices

Service

provider

Geographical

database

Google

Direction API

Mobile

device

Android

Google Maps

for markers

Google

Direction API

for route

Mobile

device

10

JSON stands for JavaScript Object Notation. It, much like XML, is syntax for storing and

exchanging text information. This application parses JSON files returned from Google

Maps Directions via web services and extracts map data from it. Program 2 shows a code

snippet used to connect to the Google Maps Directions service for drawing a direction

between the user and the nearest participant. A URL for web services is built to request

and retrieve the Google Maps Directions data in a JSON format. An example is given as

follows:

 https://maps.googleapis.com/maps/api/directions/json

 ?origin=37.422006,-122.084095

 &destination=37.431098,-122.234912&sensor=false

private String downloadJSON(LatLng user_location, LatLng other_user_location) {

 HttpURLConnection urlConnection = null;

 URL url = new URL("https://maps.googleapis.com/maps/api/directions/json?origin=" +

 user_location.latitude + "," + user_location.longitude + "&destination=" +

 other_user_location.latitude + "," + other_user_location.longitude +

 "&key=GOOGLE_API_KEY");

 // Creating an HTTP connection to communicate with the URL

 urlConnection = (HttpURLConnection) url.openConnection();

 // Connecting to the URL

 urlConnection.connect();

 // Reading data from the URL

 while ((line = br.readLine()) != null) { sb.append(line); }

Program 2: Code Snippet of Using Web Service for Google Maps Directions.

4.2 The Client-Side Code

Program 3 shows a client-side code snippet for the following two major functions:

• Receive data from the server.

• Use the data to draw the direction between the user and the nearest participant and

mark all participants.

The doInBackground method is used to request and retrieve the Google Maps

Directions data in a JSON format by using web services. The onPostExecute method

is used to parse the JSON string returned from the doInBackground method.

private class ChangeLoc extends AsyncTask <Location, Void, String> {

 @Override

 protected String doInBackground(Location... params) {

 mLatitude = params[0].getLatitude();

 mLongitude = params[0].getLongitude();

 final LatLng point = new LatLng(mLatitude, mLongitude);

 runOnUiThread(new Runnable() {

 @Override

 public void run() {

 mGoogleMap.moveCamera(CameraUpdateFactory.newLatLng(point));

 mGoogleMap.animateCamera(CameraUpdateFactory.zoomTo(12));

 }

 });

11

 ArrayList<LatLng> data = new ArrayList();

 // Fetching the information of other users from web service

 data = downloadUrl(point);

 data.add(new LatLng(mLatitude, mLongitude));

 // Drawing the marker, if destination location is not set

 final ArrayList<LatLng> finalData = data;

 runOnUiThread(new Runnable() {

 @Override

 public void run() { drawMarker(data); }

 });

 LatLng other_user_point = new LatLng(data.get(0).latitude, data.get(0).longitude);

 String results = "";

 // Fetching the route from web service (Google Maps Directions)

 results = downloadJSON(point, other_user_point);

 return results;

 }

 // Executing in UI thread, after the execution of doInBackground()

 @Override

 protected void onPostExecute(String result) {

 super.onPostExecute(result);

 ParserTask parserTask = new ParserTask();

 // Invoking the thread for parsing the JSON data.

 parserTask.execute(result);

 } // End of onPostExecute

}

Program 3: Client-Side Code Snippet.

4.3 The Server-Side Code

The server-side code includes the following two functions:

• Retrieve the participants’ locations from the geographical database by using PHP.

• Find the shortest distance by using Python shown in Program 4.

Python and PHP are used because Python is convenient in text and array processing and

PHP is commended for web processing. The shortest distance is found by finding the

distance between the user and each participant and comparing the distances.

users_locs = sys.argv[1].split(‘:’); # Receiving other users’ locations

Iterating for user locations

for distan in users_locs:

 url = 'https://maps.googleapis.com/maps/api/directions/json?origin='

 + origin + '&destination=' + distan + '&key=' + api_key

 ## Receiving the JSON object from Google Maps Directions

 f = urllib.urlopen(url)

 string = f.read()

 ## Parsing the JSON object

 j = J.loads(string)

 ## Receiving the distance

 dist = int(j["routes"][0]['legs'][0]['distance']['value'])

 Distances.append(dist)

 ## Returning the user locations in an ascending order

 for i in sorted(Distances):

 print users_locs[Distances.index(i)]

Program 4: Server-Side Code Snippet.

12

5 Summary

Mobile applications, especially location-based services, have already made a great impact

on our daily lives. It could be used for many purposes such as location-based social

networks, network routing, or human behavior study and recognition, to name a few. This

research will have broader and important impacts on location-based research and

services, as well as computer science education at the University of North Dakota.

Curriculum development and research initiatives will benefit from this research. This

project involves a variety of topics and could be used to enhance curriculum development

and for class projects. For example, the Data Science degree recently approved by the

University of North Dakota will benefit from this project because mobile data is

intensively used in this research. Research initiatives like the PhD program in scientific

computing from the Computer Science Department will use this paper to enhance their

research. Readers may apply the knowledge and technologies learned from this article to

the following suggested research or applications:

• Finding the interesting nearby places such as ethnic restaurants and movie theaters,

• Providing various recommendations such as concerts and museums including

driving/walking routes,

• Using social networks to connect people on the move within a short distance,

• Location-based promotions and coupons such as sales and discounts, and

• Indoor positioning and navigation used to help users have a better visiting

experience.

References

Android. (n.d.a). Android. Retrieved February 18, 2018, from https://www.android.com/

Android. (n.d.b). Android Studio: The official IDE for Android. Retrieved March 03,

2018, from https://developer.android.com/studio/index.html

GeoNames. (n.d.). GeoNames. Retrieved March 10, 2018, from

http://www.geonames.org/

Google. (n.d.). Google Maps Directions API. Retrieved February 16, 2018, from

https://developers.google.com/maps/documentation/directions/

Hu, W.-C. (2018). Data Engineering and Management. Retrieved January 24, 2018, from

http://udncemcs01.und.edu/~wen.chen.hu/course/515/

Hu, W.-C., Kaabouch, N., & Yang, H.-J (2014). Fundamental technologies and

methodologies for mobile/handheld app development. In Mehdi Khosrow-Pour,

editor, Encyclopedia of Information Science and Technology, ISBN13: 9-781-466-

65888-2, ISBN10: 1-466-65888-6, IGI Global.

Hu, W.-C., Kaabouch, N., Yang, H.-J., & Wang, X. (2014, April 25-26). Essential

Android technologies and Google Maps APIs for location-based services. In

Proceedings of the Midwest Instruction and Computing Symposium (MICS 2014),

Verona, Wisconsin, USA.

IDC. (2018). Smartphone OS. Retrieved March 02, 2018, from

https://www.idc.com/promo/smartphone-market-share/os

13

Malani, G. (2017, January). Location-Based Services Market. Allied Market Research,

Portland, Oregon.

MySQL. (n.d.a). MySQL. Retrieved March 05, 2018, from https://www.mysql.com/

MySQL. (n.d.b). MySQL Workbench. Retrieved February 16, 2018, from

https://www.mysql.com/products/workbench/

Technavio. (2017, May). Global Location-Based Services (LBS) Market 2017-2021.

Technavio, Toronto, Ontario.

