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Abstract 
 

The desire to teach a computer how to compose music has been a topic in the world 
of computer science since the 1950’s, with computer-less algorithmic composition dating 
back to Mozart himself. One limitation of algorithmically composing music has been the 
difficulty of eliminating the human intervention required to achieve a musically 
homogenous composition. To pursue this an automated composition process, we examined 
the intersectionality of algorithmic composition with the machine learning concept of 
classification. Using Naïve Bayes, the computer classifies pieces of classical music into 
their respective era based upon a number of attributes. It attempts to recreate each of the 
six classical styles using a technique inspired by cellular automata. The success of this 
process is determined by feeding composition samples into a number of classifiers, as well 
as analysis by studied musicians. We concluded that there is potential for further 
hybridization of classification and composition techniques.  
 
 
  



 1 

1. Introduction 
 
Of all major art forms, music has historically relied most upon scientific and mathematical 
devices in its creation. While many other forms of art are lauded for breaking the rules, and 
these avant-garde approaches often find themselves at the forefront of popularity, the most 
praised and well-respected pieces of music always seem to find themselves firmly 
grounded in the formal rules of composition that have been widely accepted for centuries.  
 
The reason behind this can be easily attributed to the notion that music is well founded in 
the world of mathematics, and the rules of music theory are indeed built upon it. Both the 
relations between pitches and durations are best defined by numbers and ratios. Because of 
its reliance on precise measurement, music was considered until fairly recently its own 
branch of science [1]. This fact makes it tempting to both analyze and create music through 
a scientific approach, and it is indeed a venture that has been attempted many times over 
the course of human history, making great strides since the beginning of the digital age.  
 
1.1 Early Exploration 
 
The intersection of mathematics and music predates the computing age quite considerably. 
The topic of algorithmically composing music saw initial explorations as early as 500 B.C. 
in the times of Pythagoras [2], when he developed the concept of “music of the spheres,” 
in which he drew some of the first significant connections between the world of music and 
mathematics. From this point on, music was comfortably in the middle of the mathematical 
spectrum, and a millennium later, Flavius Cassiodorus described mathematics as a union 
of the four disciplines: arithmetic, music, geometry and astronomy [4].  
 
Once the medieval period came around, composers began to formulate rules by which pitch 
relations and combinations were governed, laying the groundwork for music theory as a 
practice that would be followed and expanded upon for centuries [5]. It was in the 1700’s 
with a game called Musikalische Würfelspiel [6], which translates from German to 
‘musical dice game,’ that the rules were put to use in an algorithmic fashion. The game’s 
most popular iteration, allegedly devised by Mozart himself, saw the user roll a pair of 
dice, and their composition would proceed based on the outcome being mapped to a ruleset. 
These early experiments laid the ground work for algorithmic music to come.  
 
1.2 The Data-Driven Intelligence Age 
 
With the framework of algorithmic music already set centuries before, it was only natural 
that the concepts were brought into the world of computing as early as the 1950’s, at the 
genesis of the information age. The most famous example from this time is Hiller and 
Isaacson’s Illiac Suite [7], which used rule systems and Markov chains, a stochastic 
predictive system with no memory, to predict the next successive note based solely on the 
current note. This initial work with Markov chains became the springboard of 
computerized algorithmic compositions. 
 
Since this advent, the topic’s exploration has increased drastically, and has branched into 
many different realms, with new techniques and structures being used as the basic building 
block of the composition process. In his book “Algorithmic Composition: Paradigms of 
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Automated Music Generation,” Gerhard Nierhaus split the topic into several distinct 
categories, including generative grammars, transition networks, genetic algorithms, 
cellular automata, artificial neural networks (ANNs) and artificial intelligence [3]. As these 
fields grow further apart, greater strides and achievements are being made within each.  
 
The intersection of music and computing becomes even more pronounced when you 
approach the topic of data mining. Many have explored the potential of classifying music 
of all varieties, and results have been quite successful. Researchers Lebar, Chang & Yu [8] 
used classifiers to distinguish between the works of various classical composers using 
stylistic features as attributes. The basic structure of this study has been conducted by 
many, receiving respectable results overall.  
 
1.3 Study Overview 
 
While it is clear that the topic of music’s intersection with computer science has been 
explored in many facets, there is still a gap when it comes to what a computer is capable 
of producing, and some of the most recent studies in the field of algorithmic composition 
still find themselves labeled as composition inspiration software [6]. The idea of 
hybridizing multiple of the above concepts has therefore become attractive, in an effort to 
achieve the best generative characteristics from multiple approaches.  
 
It became evident during the course of our research that one such hybridization comes from 
the potential of using the field of data mining to inform the decisions made during certain 
algorithmic composition techniques. Intersecting these two concepts has the potential of 
creating a smarter generative process, capable of replicating nuanced differences between 
several different categories of music, adapting to new forms of music being introduced, 
and minimizing the amount of human intervention required for some techniques. One such 
intersection is using classification intelligence to inform a cellular automata composition 
system. It is under the guide of this general framework that we began our work.  
 

2. Data 
 
With any venture into the world of data mining, the first and most important task you must 
address is the data that you wish to use within the experiment. The topic of music presents 
a particular challenge in this respect, as the data at hand is not nearly as friendly for 
computer use as something purely numeric such as stock numbers or attendance projections 
may be. For this reason, a substantial amount of time needed to be dedicated to 
understanding the data of music, discovering what kind of characteristics are desirable to 
use from the data, and what kind of computer-friendly representations we have as options 
moving forward.  
 
2.1 Musical Representation 
 
In order to properly understand the data, it is important to first have a firm background in 
the formalities of music. For the sake of this experiment, we will be narrowing the scope 
of our focus entirely upon classical music, which we define as traditional Western music 
ranging from the Medieval era to the Modern era (not to be mistaken with the Classical 
era, which is distinction within the realm of classical music). The main reason for this 
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decision is classical music’s written consistency across history [5]. Music has evolved and 
expanded greatly since the days of Mozart and Bach and as a result, much of what is being 
created today in popular music has abandoned the concept of formally creating a written 
representation of the music. Recent years have seen the greatest decline in non-educational 
production of sheet music [10]. Luckily, classical music, by virtue of its creation for 
performances by individuals other than those composing, as well as its educational value, 
has a rich history of written representation, and thus provides us with a much more stable 
and wide backlog for analyzation.  
 
This backlog of written classical musical literature is comprised almost entirely within the 
medium of musical scores, or sheet music. Sheet music is a visual representation of music 
made up of symbols and words which convey all the information a performer must know 
to play the piece. Among other information, these symbols are capable of portraying which 
notes must be played at what time, the volume at which they are to be played, and in what 
rhythm. This manor of recording music started as early as the ancient Greek and Middle 
Eastern civilizations where they began using basic music symbols as written reminders.  
 
2.2 Digital Formats 
 
For hundreds of years, Western music has been represented by means of these musical 
scores. With the advent of the digital age, the necessity for a new representation of written 
music was realized. It is quite difficult to teach a computer to parse through the various 
symbols and notations of music, making the task of retrieving the data necessary for 
processing challenging. As a result, the computer science community was met with the 
challenge of creating a new representation of music that could be more easily processed 
for the studies to come. Though many were proposed, two have risen above the others in 
the world of research, MIDI and **kern musical files.  
 
2.2.1 MIDI 
 
First seeing its start in 1981 [11], the Musical Instrument Digital Interface (MIDI) format 
is one of the most widely used digital musical formats that exist. The format was originally 
created for use with electronic synthesizers, but over time, this format has been adapted for 
use in scholarly research, with many toolkits being developed such as jSymbolic [9] to 
extract data from the MIDI files. Because of its widespread use for a variety of functions, 
the backlog of MIDI scores to be used for potential research is vast, but also unreliable. 
This is due to the fact that anyone with an electronic keyboard can plug it into a computer 
and create these files, regardless of their accuracy level. Despite this, we found throughout 
our survey of previous studies that MIDI is the most widely used file type in academic 
research concerning computer music. 
 
2.2.2 **kern 
 
While the MIDI format was created for a wide variety of computer music purposes, a 
format known as **kern was created with a much narrower intention. **kern files are 
musical representation files which fit within a broader syntax known as ‘Humdrum.’ 
Described by its creator David Huron as a “general-purpose software system intended to 
assist musical research” [12], the software was quite literally designed for use in projects 



 4 

like this. Researchers Lebar, Chang & Yu [8] used this format in similar research when 
attempting to classify musical scores by composer. 
 
The Humdrum software can be split up into two separate entities: The Humdrum Syntax 
and the Humdrum Toolkit [12]. Humdrum Syntax is a grammar by which any file that falls 
under its guise must adhere to. **kern is a single file type under this syntax, and the most 
widely used of them, designed to represent the core information for common Western 
Music. The format is capable of representing nearly every nuance found within a musical 
score. The other half of the equation, the Humdrum Toolkit, is described by Huron as a 
toolbox of ‘utilities,’ with over 70 inter-related software tools, which can be used to 
manipulate any data that conforms to the Humdrum syntax [12]. These tools, combined 
with the vast number of features that can be represented using the Humdrum Syntax, make 
it an attractive option in the realm of data mining.  

 
While this format offers many advantages, there are certainly drawbacks to it as well. 
Because of its rather limited usage (being designed specifically for research purposes), the 
amount of data available in this file type is sparse. There have been a number of people 
who have contributed a substantial number of scores encoded in **kern format, however 
the encoding process, which must be done entirely by hand, is a tedious one (though 
perhaps lends itself to a greater attention to detail), and there will never be a rich well of 
files to choose from. Despite this deficiency, we found the format of **kern to be most 
compatible with the task at hand. The Humdrum toolkit offers us an effective way to extract 
any and all information about the score we may find useful, and the textual representation 
is also much friendlier to interpret on a visual level. With this decision, we began our work 
in data mining. 
 

3. Data Mining 
 
Data mining has exploded in recent years as an emerging concept in the area of 
computational intelligence. The applications of this new and intellectually stimulating field 
are plentiful, diverse, and exciting for those focusing on the topic. The phrase ‘data mining’ 
itself defines a rather broad idea, simply described as “the process of discovering useful 
information in large data repositories” [13]. In the pursuit of achieving this goal, data 
mining has been approached using several other distinct methodologies, such as 
classification, clustering and association, among others [13].  
 
While each of these data mining methods have merit, and some may indeed be useful in 
future works while attempting to improve the algorithmic music composition challenge, 
this study has chosen to focus its attention on the topic of classification. Classification is 
defined as “the task of assigning objects to one of several pre-defined categories” [13]. 
This objective is achieved through the use a learning scheme that generates a set of rules 
for classifying instances into these pre-defined classes. The trained classifier is then able 
to predict the classes or categories based on the generated rules [14]. The predictive power 
of this form of data mining is one of the driving forces behind our decision to focus on 
classification, as a predictive rule-based system provides us a nice backbone upon which 
to build a music generator.  
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3.1 Data Extraction 
 
In order to get the most out of the data mining process, there is a large amount of 
preparatory work that must be done to ensure that the information received as consequence 
of our work is valuable and significant. Some of these decisions include dictating which 
pre-defined classes to supply our classifier, which features we would like our classifier to 
look at in making its categorizations, and the pre-processing and data extraction required 
to make the data accessible for the actual data mining process. 
 
3.1.1 Classes 

 
Figure 1: A timeline displaying the order and generally agreed upon 

 dates of the various eras of classical music 
 
The first thing we needed to do when prepping our data for processing was select the pre-
defined classes by which to separate the data, as the classification methodology 
necessitates. In musical classification, there have been studies that have done this in several 
manors, whether it be by composer, genre, or even decade. For our study, we found it most 
appropriate to create the classes based upon musical era within the classical spectrum.  
 
There have been several eras by which the style of a classical piece can be defined, roughly 
outlined in figure 1. It is generally accepted that there are six distinct classical eras [5], 
ranging from the beginnings of formally composed music in the medieval era to the wildly 
innovative and often atonal modern era of classical music. Moreover, students and scholars 
of music are able to use their training in aural skills, such as identifying the interval between 
any two successive notes, among other musical features, to identify which of these eras a 
piece of classical music belongs to. This suggests that there are quantifiable differences in 
their structure that make it so and provides us great reason to believe a computer will be 
able to identify these differences as well.  

 
3.1.2 Attributes 

Medieval

Renaissance

Baroque

Classical

Romantic
Modern

1150

1400

1600

1750

1830

1920
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Our next step was to decide which attributes we would be basing our classification upon. 
In data mining techniques utilizing classification, these attributes – or features – are the 
sole factors analyzed in an attempt to generate rules for separating the data into the pre-
defined classes it has been given [13]. It is therefore important to choose features that are 
both indicative of the stylistic-era under which the piece was composed, as well as 
replicable for the future generative process. The features decided upon after consideration 
of a number of factors, presented in figure 2, are based upon the notion of a musical 
interval. The task of choosing these attributes came with two major challenges; one musical 
and one computational.  
 

 Attribute Description 
X1 freqUni Ratio at which unison intervals occur (unison/total) 
X2 freqStep Ratio at which stepwise intervals occur (step/total) 
X3 freqThird Ratio at which third intervals occur (third/total) 

X4 freqFourth Ratio at which fourth intervals occur (fourth/total) 
X5 freqFifth Ratio at which fifth intervals occur (fifth/total) 
X6 freqSixth Ratio at which sixth intervals occur (sixth/total) 
X7 freqSeventh Ratio at which seventh intervals occur (seventh/total) 
X8 freqOct Ratio at which octave intervals occur (octave/total) 

Figure 2: List of attributes used in classification 

By merit of the musical data we are using, there were countless numbers of attributes 
through which we had to sift in order to choose our features. As discussed in section 2.1, a 
piece of sheet music contains a vast amount of information, and our selected **kern format 
does little to narrow down that scope, as it does such an excellent job of preserving all the 
information recorded in a traditional score. Our chosen attributes must be indicative of the 
era the piece represents, so as to allow the classifier to accurately and practically determine 
which era the piece came from.  
 
From a computational standpoint, we wanted to consider features that would lend 
themselves to both the classification process, as well as the generation process in the next 
step of our research. Classification mandates that each feature within its system be flat 
rather than structural – meaning that the value can be defined by either a numeric or discrete 
value [14]. Because of music’s reliance on mathematics, this factor is not terribly 
delimiting, but it does help suggest which features may lend themselves best to the process: 
those which are finite and numerically categorized. It behooved us to focus on features 
which we could see as easily replicable in a future generative process, meaning features 
like dynamics would did little good on their own.  

 
After consideration of these factors, the decision was made to focus upon the frequency 
with which certain musical intervals occur within the pieces of music. Before we delve into 
why exactly we made this decision, it is important to understand what an interval is.  
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Figure 3 – A visual representation of the Chromatic  

Circle, the backbone on which Western music has been created. 
 
The concept of a musical interval is built upon the chromatic circle (Figure 3), a cyclical 
scale of equal temperament made up of 12 total pitches [15]. A piece of music is comprised 
of a finite number of these 12 pitches in linear progression. A musical interval is the 
distance between any two successive pitches within the piece (Figure 4). The most basic 
of these intervals is defined as an octave, which corresponds to a 2:1 ratio. For instance, 
we perceive a pitch at 110 Hz to be an octave below a 220 Hz, both of which represent the 
note ‘A’ [15]. Human beings perceive these ratios to be the same pitch, only at a higher or 
lower frequency, allowing for the cyclical nature of the scale. We can therefore identify 
the interval between any two successive notes based upon this scale.  
 

 
Figure 4: Visual representation of musical intervals 

The first reason for this selection comes from the realm of aural skills, in which it is 
common to use musical intervals as a way to identify between eras [16]. Though there are 
a number of features which are often cited when it comes to aurally distinguishing between 
eras, intervals are almost always presented as evidence in such efforts, and their status as a 
cornerstone of music theory make them an obvious answer to our query. Secondly, we 
found that the basis of intervals is an excellent building block upon which to build a 
generative system, which will be touched upon in greater detail later in our discussion.  
 
3.1.3 Pre-Processing 
 
Once all of these important determinations had been made, it was time to clean the data, 
and extract the features that had been decided upon. The first step was to collect the data 
to be used. Though the wealth of **kern scores are not as vast as desired, we were able to 
accumulate 262 unique pieces of classical music from a variety of eras (Figure 5) through 
two Humdrum databases. It is worth noting that the distribution of data entries between 
these eras were not even across all classes, as there are far less pieces of pre-baroque music 

CB

A

G F
E

D
C#
D

D#
E

F#
G

G#
A

A#
B

CHROMATIC
CIRCLE



 8 

that have been encoded using **kern format than that other which feature much more 
notable composers and pieces which have endured the test of time.  
 

Class Number of Data Entries 
Medieval 10 
Renaissance 26 
Baroque 77 
Classical 50 
Romantic 70 
Modern 29 
Total 262 

Figure 5: Distribution of data between class types 

The next step was to extract the features that we desired to use in the classification process. 
This was perhaps the most tedious task, though we were able to do so in a Linux command 
line window with a combination of both the Humdrum toolkit, designed for the **kern file 
format (and other formats following the Humdrum Syntax), as well as pattern matching 
using egrep. In the end, we stored the number of times each individual interval appeared 
and set it as a ratio against the total number of musical intervals encountered. 
 
We appended these ratios (Figure 2), along with the era with which the piece is categorized 
(Figure 1), to the end of an .arff (Attribute-Related File Format) file with appropriate 
headings. Doing this in a loop, we were able to create one file with all 262 musical scores 
represented. It is with this document that we begin our classification.  
 
3.2 Classification 
 
Classification is an umbrella term to define the task of separating data into distinct 
categories, and as such there are a large variety of methods that can be implemented in 
order to achieve the same goal. It became obvious that we would need to test our dataset 
with a variety of these classification methods, and we began work on feeding the data we 
compiled into five different classification approaches of varying sophistication levels.  
 
The two high-level algorithms in our tests were Multilayer Perceptron (MLP) and Logistic 
Regression. Based upon an artificial neural network, MLPs use layers of input nodes, 
output nodes, and two or more layers of hidden nodes to find the most likely path from our 
input data (comprised of the aforementioned musical interval attributes) to an output 
indicating a given class (musical era) [13]. Logistic Regression implements a statistical 
model built upon the probability that a certain piece of data falls within a given class or 
not. While both of these methods are dichotomous (only have one of two outcomes), they 
can be used to classify sets with more than two classes when given the dichotomous options 
of “within the given class” or “not within the given class”. 
 
While Naïve Bayes falls into the category of a lower level classifier, it perhaps deserves a 
little more recognition than the title suggests. While it does not use sophisticated algorithms 
like the above outlined MLP and Logistic Regression models, it is a very well-respected 
model in the data mining community, and it indeed performs just as well or better than 
sophisticated models in some instances. The premise of this model is simple, based upon 
Bayes theorem, which provides a way of calculating the posterior probability of an attribute 
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fitting a defined class [17]. The success of this algorithm lies in the fact that each given 
attribute is considered independent of one another. As a result, the most probable class is 
calculated based upon each attribute identified separately, and these probabilities are then 
multiplied against each other to determine the probability that the piece of data, in this case 
a musical piece, falls into a given class. 
 
The other low level of classifiers used in our study fall into the category of rule-based and 
decision tree induction predictors. We selected one of each such classifiers, JRip (Rule-
Based) and J48 (Decision Tree). JRip uses simple if…then rule structures to split the data 
into the given classes [13]. J48 uses a similar system within a decision tree structure, where 
there is a leaf node associated with each of the pre-determined classes, and classification 
rules are derived and placed within the ascending nodes as the data is analyzed [17].   
 
3.3 Results 
 

 Medieval Renaissance Baroque Classical Romantic Modern Average 

MLP 0.964 0.958 0.854 0.988 0.836 0.996 0.933 
LR 0.981 0.951 0.808 0.921 0.885 0.927 0.885 
Naïve 0.938 0.931 0.73 0.889 0.853 0.871 0.838 
JRip 0.705 0.841 0.73 0.874 0.704 0.836 0.773 
J48 0.798 0.777 0.681 0.804 0.741 0.753 0.753 

Figure 6: Results of classifier based on AUC of ROC graph.  

The charts outlined in Figure 6 show a complete picture of the results received from each 
of the five aforementioned methods of classification. Using a method of testing known as 
ten-fold cross validation, the set of data is partitioned into ten equal segments. During each 
iteration of testing, 9/10ths of the data gets assigned to act as a training set, used to educate 
the classifier and build its predictive ability. The other 1/10th of the data is designated to be 
the test set, used to analyze how well the classifier is able to predict the class the data 
belongs to. This process is reiterated ten times, until all the data has been part of a test set.  
 
In analyzing the results, we chose to focus on the value of the AUC (area under the curve) 
of a Receiver Operating Characteristic graph as an indication of the success of our 
classifiers. The reason for this decision is due to the inconsistent number of data pieces 
between each class represented (Figure 5). The Receiver Operating Characteristic (ROC) 
Curve maps the True Positive Rate (true positives / all positives) against the False Positive 
Rate (false positives / all positives). This produces a curve that will represent how often a 
piece is mistakenly identified as other than its proper class, rather than produce a true 
precision rate, which may be skewed as a result of the uneven distribution of data. A 
perfectly classified set of data would have an AUC of 1. 
 
As seen in the charts, our five classifier models performed at varying levels of accuracy. 
The highest-level algorithm used, the Multilayer Perceptron model, produced AUC rates 
of .933, while our rule-based and decision tree classifiers lagged behind with AUC rates of 
.773 and .753 respectively. Based on the complexity of each algorithm, it didn’t come as a 
surprise that the results fell the way they did. Higher level algorithms such as MLPs or 
Logistic Regression have a natural head start on decision tree or rule-based algorithms. 
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Perhaps the biggest outlier in the classifiers presented is the Naïve Bayes model, with an 
excellent AUC rate of .838, despite the algorithm being quite simple and intuitive.  
 

4. Generation 
 
After analyzing the results of the classifiers, the first step in creating our algorithmic 
composition software was to choose one classifier to use going forward in the hybridization 
process. On top of providing class predictions, each classifier supplied an additional output, 
intended to inform the reader on how it’s decision rules were devised. These outputs are 
important, as they are the building block upon which we intend to build our music 
generator. Of the five classifiers, the first two eliminated were the rule-based and decision 
tree models, JRip and J48. While the classifiers provided positive features, such as easy to 
understand outputs that outlined the rules used explicitly, it was clear that these approaches 
were simply not of the same accuracy as their higher-level counterparts.  
 
Of our three remaining classifiers, we chose to eliminate the high-level classifiers, MLP 
and Logistic Regression. Despite these algorithms statistically doing better at classifying 
the musical scores, MLPs and Logistic Regression are very complex algorithms, and as a 
result, the output does not give a digestible answer as to why the classes were separated 
the way they were. For this reason, it was difficult to conceive of a way to use these 
classifiers to inform the generative process of any algorithmic composition software. 
 
We decided to proceed using the Naïve Bayes approach as a middle ground between the 
previously mentioned choices. It provides a statistical output for us to easily adapt to the 
generative process. On top of this, the Bayes model yielded a much more respectable AUC 
value (.838) than the lower-level algorithms of J48 (.753) and JRip (.773).  
 
4.1 Method  
 
In perhaps our most contributory work, we move to the generation process of the 
experiment. The task laid ahead of us was to find a way to utilize the intelligence gained 
from our Naïve Bayes classifier to inspire the algorithmic composition of music. After 
consideration of the classifier results and output, we decided to turn our attention to an 
avenue of algorithmic composition that has been less explored than some others such as 
artificial neural networks and formal grammars: Cellular automata.  
 

 
Figure 7: Rule 250 in the Wolfram Elementary Algorithm Suite 
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4.1.1 Cellular Automata 
 
The concept of cellular automata (Singular: Automaton) was first proposed by John von 
Neumann in the 1950’s and reached a peak in popularity during the 70’s due to John 
Conway’s now famous “Game of Life” 3-D cellular automata model [17]. Based upon the 
biological cellular replication process, a cellular automata model is represented by a grid 
of cells, each of which is represented as one of a finite number of states (i.e. “ON” or 
“OFF”). This grid can be of any finite number of dimensions. The grid progresses in 
temporally-linear fashion, with each cell shifting states at any given step in time. This shift 
of the cell states is based upon two factors: the states of the surrounding cells in a pre-
determined area defined as it’s neighborhood, and a set of transitionary rules which dictate 
the outcome based on that neighborhood [17]. One of the most famous example of a cellular 
automata, the Wolfram Elementary Algorithms (Figure 7), adds a new line of cells below 
the previous generated line with each sequential step in time. [18]. With 256 possible rule 
sets, there are countless possibilities of how the algorithm can compose the sequence of 
cells, and many produce interesting patterns, such as fractals.  
 
Rule model’s such as Wolfram’s provide a unique avenue of exploration for musical 
composition. The patterns found within these automata rules provide a built-in approach to 
chaotic music composition. However, those preliminary cellular automata models were 
only able to create music in an “uncontrolled” way and resulted in music that was not 
necessarily homogenous with any preconceived style [6]. The next natural step was to 
create transitionary rules that were informed by music theory, so as to control the music 
being generated. 
 
4.2.2 Adapted Musical Model 

 
In an attempt to explore this avenue of musically informed cellular automata rule 
generation, we devised of a system inspired by the aforementioned Wolfram Algorithm. In 
a four-wide grid, each cell has one of two states: “On” and “Off.” These states allow for us 
to interpret a four-cell phrase as a binary sequence. We chose to map these binary 
sequences (16 sequences for a four-byte binary number) to the 12 notes of the chromatic 
circle (Figure 8). While this rudimentary system does not take into account rhythm, a rest 
character was also encoded for potential future works.  
 
After the groundwork of our cellular automata model was fully laid out, it was time to 
create transitionary rules inspired by the intelligence gained through our classification 
process. Before each shift in states, a random float value between 0 and 1 was generated. 
Using the output from our Naïve Bayes classifier, which gave us statistical probabilities of 
each musical interval occurring at a given shift in time for a given era, this random float 
was mapped to one of the eight interval possibilities. The states of each cell in the four-
byte sequence would then transition from the previous states to a new sequence of differing 
states based on this mapping. The distance between the old sequence and new would 
therefore be equivalent to the musical distance of the determined interval. We are 
essentially generating the interval between the notes, rather than the note itself. Along with 
creating more aurally pleasing musical phrases, this helps ease the challenges of 
representing key signatures within pieces of music.  
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Figure 8: A table mapping the values of a four-bit binary sequence to 

the values within the chromatic circle for use in conjunction with  
cellular automata musical composition  

 
To further demonstrate the potentials of this system, the software is able to switch between 
eras at the will of the user. Based upon the values output by the Naïve Bayes classifier, the 
system will replace the statistical values for the generated rule to each respective era of 
classical music at the click of a button, so as to encourage the system to follow the 
tendencies of the desired era. This feature helps the software stand out and puts to use the 
predictive power of our classification approach to rule generation.  

 
The last feature we implemented was a range-check system. In preliminary testing, we 
found that allowing the note to change in ascending or descending fashion on a 50-50 basis 
was not controlled enough for our experiment, as the true randomness allowed for many 
algorithmic compositions to get out of hand in terms of range. We found the average 
distance between the highest note and lowest note within an era of music and dictated that 
the composition software stays within that range when composing. This allows music that 
has traditionally had more range to flourish in this sense, while static pieces from earlier 
eras stick within a more contained range of notes.  
 
4.2 Results 
 
The result of our efforts is a composition software that is able to imitate any one of six 
distinct eras of classical music. The system linearly produces a sequence of successive 
notes based upon the intervals between the previous note and the newly generated note. 
The pitches are played as they are generated using a Java MIDI import at a constant rate 
that can be changed in the code (currently set to one note every 750 milliseconds).  
 
With the system functioning in the desired fashion, our next step was to analyze just how 
well our composition software was able to imitate the various classical eras. We chose to 
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implement two different methods of analyzation, to see how well the system was able to 
reproduce the various eras in both a mathematical and an aural fashion. 
 
4.2.1 Indirect Analyzation 
 
In our first of two efforts to analyze the results of our compositions, we used an indirect 
approach closely tied to the ways in which we created the software – classification. While 
we previously described a ‘ten-fold cross verification’ approach during our initial 
classification process, we decided upon using a ‘test set’ approach for the following 
exercise. In this approach, we feed the classifier a set of data points known as a training set 
to develop its knowledge on what distinguishes the different classes, and then feed it a set 
of data points known as a test set to see how accurately it is able to classify those pieces 
within the given classes.  
 
To do this, we generated sixty pieces of algorithmically composed music – ten within each 
era and each piece with a length of 100 notes. We extracted from these compositions the 
same features we outlined in section 2.1.2, and translated the results into an .arff file 
mirroring the structure of our previously used .arff file. We then used this file as our test 
set and provided the file from our initial classification exercise as a training set. We ran 
these classification techniques on four of the five classifiers used in our original exercise, 
excluding the Naïve Bayes classifier we used to inform the composition software, as it 
would provide an unnaturally insightful look into the data, resulting in skewed results. The 
classifiers’ results are displayed in the chart below (Figure 9). 
 

 Medieval Renaissance Baroque Classical Romantic Modern Average 

MLP 0.942 0.9 0.858 0.918 0.754 0.986 0.893 
LR 0.978 0.938 0.824 0.946 0.836 0.998 0.92 
JRip 0.852 0.753 0.662 0.816 0.582 0.786 0.742 
J48 0.812 0.757 0.757 0.8 0.678 0.826 0.772 

Figure 9: Our compositions’ classification results based on AUC of ROC graph.  

The classifiers performed quite well in determining the era which our composition software 
was attempting to replicate. In fact, the classifiers success rates were nearly identical to the 
success rates they experienced with traditionally composed pieces of music, with their short 
comings being seen in the same categories. The only classifier that saw significant changes 
in performance was that of the logistic regression approach, which saw the average ROC 
percentage jump from .885 to .92. These results alone are highly encouraging.  
 
4.2.2 Direct Analyzation 
 
We decided to take a direct approach to the matter as well and consulted a number of 
experts in music. In total, five scholars of music took part in a survey to determine how 
well they could distinguish the success of our classifier. The exercise was simple: We 
generated three 15 second clips of music from each era and presented them together in a 
random order to the experts. We asked at the conclusion of each trio for the experts to 
indicate which era they believed the composition software was meant to represent, and 
their confidence on a scale from 1-5. We also gave the experts an opportunity to explain 
how they arrived at that answer, and why they gave the confidence level they did. 
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The results of our direct method of analysis were not as encouraging as the indirect method. 
Of our experts, only one was able to predict 50% of the eras correctly, and one failed to 
predict a single era. The confidence levels hovered between one and three for most answers, 
with a distinct increase in both confidence and accuracy with the modern era, of which four 
of our five experts correctly predicted.  
 

5. Discussion 
 
The results of our direct method of analysis tell a different story than the indirect method. 
While our classifiers were able to tell which era of music was being replicated with our 
composition software to a high level of accuracy, experts in music had a much harder time 
doing so, with a success rate of below 30% when presented the option of all six eras.  
 
Because of the nature of the process, it comes as no surprise that our direct and indirect 
methods of analysis yielded such different results. This is likely because of the limited 
scope with which we approached the problem, deciding to focus on a very select number 
of features, even though the differences in musical styles between the eras is defined by 
many more features, such as rhythm and harmony (A distinction many of our experts 
pointed out during their survey). Despite this, it is certainly promising that the features we 
did choose to use in the experiment yielded such high results in our indirect method of 
analysis. This suggests that, even if the music is not very aurally identifiable yet, trained 
AI has the ability to distinguish the differences.  
 
5.1 Applications 
 
For now, it seems the application of this software lays firmly in the category of 
‘composition inspiration software’ that encompasses so much of the work that has been 
done in the field, though it certainly shows signs that it has the potential to be more. The 
success of our classifiers indicates that there is a lot of potential in the system, when put to 
use in the correct fashion. The cellular automata system also lends itself to be used with 
different classifiers, or perhaps even different types of music, as it has been designed to be 
adapted to any kind of transitionary rule set. 
 
5.2 Future Works 
 
At the end of the study, our thoughts on moving forward are much the same as they were 
when we began. The prospect of hybridizing the various methods of algorithmic music 
composition with data mining is a vast well of potential which this study has only begun 
to scratch the surface of. Based on the experts’ opinions that our focus on the feature of 
musical intervals was not enough to encompass all the characteristics of a classical era 
implies that more hybridization must be done to make the system more aurally accurate.  
 
There are a number of avenues that could improve the system in such a manor. This could 
include varying the instrumentation based on which era, and factoring into the composition 
rhythm, dynamics and harmony. Another feature that could yield positive results would be 
to adapt the system to employ an nth-order technique. This would allow the music to have 
natural phrasing.  
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