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Abstract 
 

The Department of Computer Science at the University of North Dakota (UND) has been 

evaluating optical/imaging methods for measuring the quality of 3D printed parts. In 

particular, we are interested in optical/imaging methods that can detect and measure such 

quality issues as layer shifting, layer separation and splitting, overheating, dimensional 

accuracy, and infill errors.  

 

This paper describes our work towards the analysis of infill errors as the quality of the infill 

does impact the structural integrity of the part being made. Externally, a part may look 

acceptable, but if the infill is faulty the part may be structurally unsound. Furthermore, 

once a part is finished printing it is usually not possible to see the infill. Therefore, 

monitoring of the infill must be done while the part is being printed. 

  



Introduction 

The Department of Computer Science at the University of North Dakota (UND) has been 

evaluating optical/imaging methods for measuring the quality of 3D printed parts. In 

particular, we are interested in optical/imaging methods that can detect and measure such 

quality issues as layer shifting, layer separation and splitting, overheating, dimensional 

accuracy, and infill errors.  

To evaluate infill error, we used both a camera to acquire the images and a computer model 

of part being made. The intent is to be able to generate a model of the internal structure of 

the part being made by parsing the G-code (RS-274) layer by layer and then comparing the 

computer model with an image of the part being generated. For those unfamiliar with 

numerical control (NC) programming languages, G-code is a language which instructs 

computerized machine tools how to make something by telling the device’s motors where 

to move, how fast to move, and what path to follow. For this project the G-code is parsed 

and a 3D computer model, using OpenGL, is created. This allows us to rotate or tilt the 

computer model and adjust the lighting model to best match the physical environment. In 

our case, we then used a Logitech Brio 4K webcam to acquire the images and a XYZ 

printing da Vinci 1.0 3D printer to fabricate the parts. In this paper we will provide details 

as to the G-code parsing and OpenGL model, examples, and the results of the study. 

 

 

Background 
 

3D printing is an additive manufacturing process where products are produced layer by 

layer in cross sectional slices [1]. 3D printing is becoming commonly used in producing 

customized and low production run (low volume) products. Examples of where 3D printing 

has been used as a meaningful and reliable way of manufacturing include: replacement 

parts of machine, prototypes, and medical components. Prototyping, in particular, is an 

area where 3D printing has multiple advantages: 1) ease of duplicating products, 2) security 

and privacy consideration of product design, and 3) low cost in customized manufacturing 

[1].  

 

3D printing was first introduced in 1970 [2] and 3D printers work in a way similar to 

traditional laser or inkjet printers; however, instead of using multi-colored inks, they use 

filament which slowly builds the piece layer by layer by melting down and depositing the 

extruder material [1]. Software is used to create thousands of cross-sectional slices of each 

design to determine which layer is to be constructed and how to construct it. A 3D printer 

can produce a simple object like a gear in less than an hour [1].  

 

The 3D printing type varies on the materials used. Experiments have been done to produce 

a versatile range of products like biodegradable materials [3], pharmaceuticals [5,6], 

microfluids [8], imaging apertures [4] and nanocomposites [7] all of these have been 3D 

printed. It can be used for preserving historical objects [9] and creating educational 

excitement [10].  

 



3D printing is an immerging field, as such, we need to be aware of the drawbacks of this 

technology. Some researchers have found carcinogenic (radioactive) emissions from 3D 

printed materials when they are melted for printing/extruding [11]; and, this may have a 

huge impact on society, but analysis of those impacts is beyond the scope of this paper. 

Our goal is to determine if we can find defects in 3D printed objects at the time of printing 

through analysis of images. As a typical 3D printer can’t detect defects in the products, our 

concern is to provide a mechanism that can operate during the print phase, a mechanism 

that can detect faults while the part is being printed and eventually be able to then instruct 

the printer to stop printing (i.e. abandon the part). 

 

To find defects in already printed parts, we intend to scan the part using a 3D high 

resolution camera. Such approaches are already commonly in use. Three-dimensional 

scanning is used for measuring object shape and size [12], evaluation of cosmetic products 

used in reshaping human bodies [13], and in creating custom wear clothing based on body 

shape [14]. 3D scanning also has many applications in medical science such as in finding 

defects of a person’s skeletal structure [15], and in validating the quality of automotive 

products [16] such as turbine blades. 

 

There are a lot of 3D scanning technologies and some are good for short distant scanning 

and some are better suited for mid or long-range scanning. Some 3D scanning technologies 

are better for small objects and some are better for large objects like aircraft [17]. Short 

range scanners typically use laser triangulation or structured light technology. For longer 

range scanning, the scanner projects a laser line or multiple lines onto an object and then 

captures the reflection with single or multiple sensor(s). It is critical that the sensors be 

located in a known position/distance in order to be able to accurately measure the structure 

of experimental object. Is such cases, the reflection angel is considered when finding actual 

points of construction in certain areas.   

 

In this work, instead of using laser, we used a 4k camera to monitor the shape of the part 

under construction inside the 3D printer. We also used the 4k camera to analyze the parts 

after completion where we evaluated the parts with respect to warp, tilt, deformation, and 

delamination; However, those analyses are not of interest to this paper. 

 

G-code Parser 
 

As noted above, G-code [18, 19] is a numerical control (NC) programming language which 

instructs computerized machine tools how to make something by telling the device’s 

motors where to move, how fast to move, and what path to follow. In this case, the G-code 

is comprised of numerous commands that are mostly used for initializing the printer and 

are not used in the generation of the part. These commands are not of interest to us. The 

OpenGL parser only used two commands from the entire set of possible G-code 

commands. The two commands are G0 and G1. All the other commands are used to either 

set up the printer, such as setting the bed temperature or adjusting the bed height, or 

switching the coordinate system between absolute positing or relative positing. Absolute 

positing is the coordinates from the nozzle origin which was in the lower left-hand corner 



of our particular printer. Relative positing is used to move the nozzle a certain distance 

from its current location, such as moving the nozzle up five units. The units are generally 

in millimeters. The reason why we didn’t have to worry about which coordinate system we 

are in is because the printer switches between these two systems at very specific times 

during the printing. At these times the nozzle wasn’t extruding any filament, so it wouldn’t 

affect the OpenGL model. 
 

The G0 and G1 commands have three components that we have to worry about. The first 

component is the actual G0 or G1 part. The parser uses this component to determine what 

should be done next (in regards to generating the OpenGL model). The next component 

are the position coordinates. There is at least an X, Y, or Z coordinate. This first component 

is where the parser extracts the coordinate points for the vertices of the OpenGL model. 

The last component is the for the extruder and tells the printer to extrude filament. For the 

parser, we only need to know if we, or are not, extruding filament. If we are then the parser 

would automatically calculate the correct amount of filament to extrude (in the OpenGL 

model). If filament is not to be extruded, we would use this parameter to keep track of the 

nozzle position (in the OpenGL model). Figure 1 depicts a sample of the G-Code. 

 
G1 X149.699 Y143.200 E10.11763 

Figure 1: Example G-code Command. 

 

The parser has two main stages. The first stage is the extraction stage of the necessary data 

from the G-Code. This stage would go through the G-code file line by line and get the 

coordinate points for each vertex and determine if there is filament between two vertices. 

All the data for the coordinate points and the filament extraction is held in a structure 

(shown in figure 2). The X, Y, and Z coordinates are held in GLDouble variables. The 

filament extraction value is held as an boolean value. The second stage of the parser is 

where the program goes through the coordinate points and renders the OpenGL model.  

 
struct coordinatepoint 

{ 

GLdouble xCoordinate; 

GLdouble xCoordinate; 

GLdouble xCoordinate; 

bool draw; 

}; 

Figure 2: Structure for G-code Data. 

 

The extraction stage of the parser has a few steps to it. The first step is to remove all the 

comments. G-code has two ways of denoting comments. The first way is with a semi-colon. 

The parser will scan a line for a semi-colon. If it finds one, it will remove everything after 

the semi-colon. The second way of denoting a comment is with the use of a set of 

parentheses. If the parser finds an opening parenthesis, it will scan the remainder of the 

line for the closing parenthesis. After it finds the closing parenthesis, it will remove the 

substring where the comment is. 

 

The extraction stage second step is to determine if it is a G0 or a G1 command. It does this 

by testing the first character of the line. If it is a ‘G’, then it tests the next character of the 



line. If the first character is not a ‘G’, then it moves on to the next line. If the second 

character is a ‘0’, it sends the remainder of the line to be processed a function that 

corresponds to the G0 command. If the second character is a ‘1’, the remainder of the line 

is sent to a function for the G1 command.  

 

The G0 command is used to tell the printer to move from one point to another as fast as 

possible in all axes. For example, if the nozzle needs to move 3 millimeters in the x axis 

and 6 millimeters in the z axis and the max speed in any axis in 3 millimeters per second, 

it would move the nozzle 3 millimeters per second in the X direction and 3 millimeters per 

second in the Z direction. After one second has passed, the speed in the X direction will be 

reduced to 0 millimeters per second and the speed in the Z direction will remain the same. 

Once the nozzle reaches its destination, the velocity in all axes is reduced to 0. This was 

implemented in the parser by breaking the command into multiple commands. The parser 

would calculate the line that would be produced by the first part of the command until the 

nozzle switched directions. It would then store the two endpoints of the line in the global 

vector holding all the vertices. The parser would then calculate the remaining part of the 

line and put those endpoints in the same vector. The last step for the parser would be to 

check if there was an ‘E’ component for the G-Code command. If there was, the filament 

extraction value in the coordinate point struct would be set to true, instructing the parser to 

draw a section in the OpenGL model. If the ‘E’ parameter doesn’t exist in the G-Code 

command, the filament extraction value would be set to false, instructing the parser to 

simply update the position of the virtual print head in the OpenGL model. The parser would 

still have to worry about that particular G-Code command even if there was no ‘E’ 

parameter because the parser needs to be able to track where the nozzle is.  

 

The G1 command is used to tell the printer to move from one point to another in one straight 

line. This is accomplished by the nozzle using different speeds for each axis, so every axis 

reaches their destination at the same time. The parser simulates this by just adding the 

destination coordinate to the coordinates vector. The parser would also set the filament 

extraction value to true if the ‘E’ parameter is present in the particular G-Code command. 

If the ‘E’ parameter is not present, the filament extraction value is set to false. 

 

The next step of the parser is to take the coordinates and map them to the OpenGL model. 

This is done is by placing spheres along where the filament would be extruded. This was 

done so we could include a lighting model and render the OpenGL model as photorealistic 

as possible. The way we implemented this was by calculating the total amount each axes 

would change. Then we calculated the total length of the line the spheres would be covering 

by calculating the Euclidean distance. After that, we divided the distance of the axes by the 

total length of the line. Then we used these values to increment along the line to place the 

spheres. Figure 3 provides this code. 

 
double xDist = next.xCoordinate – prev.xCoordinate; 

double yDist = next.yCoordinate – prev.yCoordinate; 

double zDist = next.zCoordinate – prev.zCoordinate; 

double totalSpheres = floor(10 * totDist); 

double xGap = xDist/totalSpheres; 

double yGap = yDist/totalSpheres; 

double zGap = zDist/totalSpheres; 



for (int i = 1; i <= totalSpheres; i++)  

{ 

 popMatrix(); 

 glTranslated(xGap * i, yGap * i, zGap * i); 

 glutSolidSphere(1, 10, 10); 

 pushMatrix(); 

} 

Figure 3: Code for placing spheres. 

 

Once everything is drawn to the screen, we rotate, scale, and translate the model and adjust 

the lighting model to best match the model being printed and its environment. The rotation, 

scaling, and translation of the model was done by just mapping different keyboard keys to 

global variables and applying those values to the OpenGL commands for rotation, scaling, 

and translation. The lighting model was implemented by just adjusting the different values 

for each type of light. The types of lights we used were ambient, diffuse, and specular. In 

this case, since the two physical parts were made of different types of materials, each 

OpenGL model had to have a unique lighting model even though they were in identical 

environments. 

 

 

Results 
 

For the this work we used two different models. While both were of a 10cm cube, each one 

had different infill patterns and densities. Our first model utilized a honeycomb infill with 

a density of about 12.5%. The filament was a black color. Figure 4 provides a photograph 

of the physical part with figure 5 showing the OpenGL model. 

 

       
Figure 4: 3D Printed part.       

 



 
Figure 5: OpenGL Model

Our second model utilized a rectilinear/diagonal infill with a density of about 50%. The 

filament was a red color. Figure 6 provides a photograph of the physical part with figure 7 

showing the OpenGL model. 

 

 
Figure 6: 3D Printed Model 

 



 
Figure 7: OpenGL Model  

 

 

Conclusion 
 

This paper describes our work towards the analysis of infill errors as the quality of the infill 

does impact the structural integrity of the part being made. Externally, a part may look 

acceptable, but if the infill is faulty the part may be structurally unsound. Furthermore, 

once a part is finished printing it is usually not possible to see the infill. Therefore, 

monitoring of the infill must be done while the part is being printed. 

 

The intent was to use a camera to take pictures of a part as it was being printed and to 

compare those images with an image generated by an OpenGL model. A model that would 

be generated from the printer’s G-code at the same time and same rate as the part being 

printed. Theoretically, if done properly, the OpenGL model and the actual physical part 

would coincide in every visible way. The OpenGL model would be scaled and rotated to 

match the camera angle and the OpenGL lighting model would be tailored to match that of 

the printing environment. 

 

We ran into a number of problems. Firstly, the Logitech Brio 4K webcam has a very wide 

field of view creating a lot of distortion when trying to image objects up close, as in our 

case. Therefore, the images presented were actually taken with a Nikon Coolpix camera. 

Secondly, using a low-cost da Vinci 1.0 3D printer resulted in a variety of infill variations. 

When using a rectilinear/diagonal infill pattern with a density of about 50%, the physical 

part and OpenGL model correlated well. However, this infill pattern generated a lot of heat 

and the 3D printer’s build plate eventually shattered. When using the honeycomb infill 

pattern with a density of about 12.5%, probably the most common infill pattern and density, 

the physical part and the OpenGL model did not match very well at all. At this point we 



are of the opinion that this approach will only be truly feasible when higher density infills 

are used. 
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