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Abstract 
 

Since there are several methods for determining the difficulty of any given Sudoku puzzle, 

correctly classifying a puzzles difficulty can be challenging. This research project seeks to 

generate a neural network capable of classifying Sudoku problems within a given scheme. 

This study focuses on using supervised learning techniques in conjunction with genetic 

algorithm methods implemented using the Keras and Numpy modules in a Python 3 

environment. This paper will discuss the acquisition and manipulation of data for use in 

training neural networks, the automatic construction of neural networks, evolving 

populations of neural networks with genetic algorithm concepts, and how each contributes 

to generating a neural network that can best classify the difficulty of Sudoku puzzles. 
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Introduction 
 

Sudoku is a logic puzzle enjoyed for the simplicity of rules, yet complexity and challenge 

of gameplay. Since there are several methods to solve a puzzle, accurately determining the 

level of difficulty of any given Sudoku puzzle can be challenging. This challenge has 

sparked interest in developing ways to compute the complexity of Sudoku puzzles.  

Dissention exists in the field with some individuals determining difficulty based on 

algorithmic or strategic techniques while others rely on human perceptions of difficulty 

and average time taken to solve puzzles.  Some work has been done using genetic 

algorithms to solve and rate puzzles (Mantere & Koljonen, 2007), identifying challenges 

with efficacy.  This challenge provides a unique opportunity to test machine learning 

through Neural Networks (NN).  

 

A NN’s ability to accurately and consistently categorize Sudoku puzzles into specific bins 

of difficulty given a pre-existing classification scheme would allow for the comparison of 

various classifications schemes.  Previous research on NN’s has looked at solving Sudoku 

puzzles (Mladenov, Karampelas, Pavlatos, Zirintsis, 2011), however, little work has 

explored combining NN with genetic algorithms to rate the difficulty of Sudoku puzzles.  

To that end, this research project seeks to generate a NN capable of correctly classifying 

Sudoku problems in a given scheme with above 90% accuracy given an unsolved Sudoku 

problem. While there are many ways to establish and evolve a NN, this study focused on 

using supervised learning techniques in conjunction with an island model genetic algorithm 

implemented using the Keras and Numpy modules in a Python 3 environment.  The island 

model is especially appropriate for this type of study because the sparse research conducted 

combining NN’s and evolutionary computation towards this categorization Sudoku 

problem.  

 

 

Background & Conceptual Framework 
 

 

Neural Networks 
 

As research around NN’s develops down divergent and convergent paths of research, it 

becomes imperative to define some parameters for this study and terms used moving 

forward consisting of NN’s and genetic algorithms used for this study. We operationalize 

Neural Networks in multiple component parts noted in table 1. 
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Component Description 

Layer A collection of nodes that will propagate information forward in the NN 

Node Take in inputs from the previous layer and applies an activation function 

Activation 

Function 

A mathematical expression that will transform the inputs to a node into 

an output for the next layer 

Weight A value that adjusts inputs to a node, indicating the node's significance 

Table 1: Components of a Neural Network 

 

Since the goal was to develop a NN that was capable of learning an existing classification 

scheme, a supervised learning approach was chosen. This approach involves using a 

labeled dataset, one that has already been classified, to train an NN. Characteristics of the 

data, called predictors, are used as inputs for the NN. The NN will process these inputs to 

produce an output value, which is considered the prediction. That prediction is compared 

to the expected value, also known as the target value or the label. The difference between 

the two is measured as error, and through back propagation, the weights are updated, and 

the NN continues this process with the next point in the dataset. 

 

 

Genetic Algorithms 

 
A genetic algorithm is a type of evolutionary computation where we have a population of 

objects, called members. Each member is defined by a list of traits, which are values that 

describe the object. A basic GA follows the following sequence of events: (Sivanandam & 

Deepa, 2008) 

 

1) Create an initial random population 

2) Evaluate fitness for the population 

3) Store best individual 

4) Create a mating pool 

5) Create the next generations 

6) if the optimal solution is found, stop 

7) otherwise reproduce 

8) perform mutation 

 

The idea behind the island model is to have several populations that evolve, using a GA, 

independently for a set amount of generations called the migration interval. Then perform 

a migration where members from one population move to another. This helps to prevent 

premature convergence in any of the populations. 
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Developing the Program 
 

 

Designing the NN and Processing Data 

 
It would be possible to build a NN from the ground up. Specifying the arrays that would 

contain input values from and those that would contain the weights. This would also require 

specifying the activation function that would transform the inputs into outputs. 

Alternatively, there are several modules that can be used to assist with the creation of NNs 

such as SciKit-learn, Keras, and Tensor Flow. Keras was chosen because it allowed the 

specification of NN parameters without the need to write the code for every object of the 

NN (figure 1). Also, Keras has several activation functions readily available within the 

module. The build_model(A.1) algorithm in Appendix A was designed to generate an NN 

using passed in parameters. 

 

 
Figure 1: Visualization of Neural Network 

 

Additionally, a sufficiently large data set of already graded puzzles would need to be 

vectorized. Meaning, that critical characteristics need to be chosen as predictors (inputs for 

the NN) and a method devised for extracting the predictors from the data set as a vector of 

information. The characteristics chosen to be used as predictors were the numbers given in 

an unsolved puzzle, known as givens. To this end, get_predictors (A.2) was designed to 

capture the givens as the number provided in each column, row, box, and number class. 

The parameter passed to this algorithm is a csv of strings containing the puzzle id, unsolved 

puzzle, solved puzzle, and difficulty delimited by a semi-colon. Additionally, 

get_targets(A.3) was designed to create a vector of the target values for use in the training 

process. 
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Acquiring a better set of training data 

 
The initial dataset had 30,000 sudoku problems classified as very easy or easy. An entity 

classifying sudoku puzzle rarely uses only two classifications especially ones so close 

together. This realization instigated a search for a data set with a greater range of 

difficulties. Which, led to the discovery of a sudoku generator called QQWing Sudoku 

(Ostermiller) that would create and grade the difficulty based on algorithmic techniques 

and heuristics discovered during while solving the puzzle. This generator provided 

advantages by allowing for the generation of simple, easy, intermediate, and expert level 

puzzles either randomly or at a specified level. Additionally, this program enabled the 

generation of as many puzzles as needed to build a data set and could write them to csv. 

One issue which arose was the string output by the generator used periods instead of zeros 

to denote blank spaces in the unsolved puzzle. Also, the grades were provided as words as 

opposed to numerical values. Algorithm A.4 was designed to convert the new format of 

the data to the schema used in the initial dataset.  

 

 

Implementing a Genetic Algorithm 
 

At this point, the program was able to generate an NN capable of training on data sets given 

the parameters of the NN were specified. The first attempt at finding involved set intervals 

of parameters and testing each combination. This took multiple trials, time, and effort 

resulting in no indications to which direction the parameters should be adjusted. Even with 

the design constraints of having two hidden layers, and no layer having more than 36 nodes, 

the search space contained 8,503,056 permutations. Thus, it was decided that a GA should 

be used to reduce the amount of time searching for the optimal design. The first step was 

design and implementation of the generation function (A.5) that would generate a 

population. This algorithm generates random parameters and constructing them into an 

array that will be returned and housed in an array of members.  

 

This array of members is then used in fitness(A.6), an algorithm that iterates through each 

member building and training an NN using the traits of the member. The fitness algorithm 

will then return an array with each member's traits with the training accuracy concatenated 

to the end of the list of traits. The array with the accuracies is then passed to a 

selection(A.7), which use tournament selection. This a selection method where the fitness 

of two members is compared using their accuracies, and the member with higher accuracy 

is kept in the population.  

 

Once a list of stronger members has been compiled, the list is passed to the breed algorithm 

(A.8). Breed runs through the members passed in and selects two to be parents that will 

create a child member. The child member is created by going through and randomly 

selecting a trait from one of the parents to fill the trait of the child. The child also has a 

.001 chance of mutating where a random trait is selected and then replaced with a new 

random value. This creates a new population and completes the generation. This cycle will 

repeat for a specified number of generations, known as migration interval. At the end of 
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the current migration interval, a list of all current member in each population is compiled, 

a migration (A.9) algorithm will select the strongest quarter of each population to stay, the 

weakest quarter will migrate, be removed from the current population and added to another 

population. After the migration, the breed algorithm will be run on the new populations, 

and the next migrations interval will begin and continue for the set number of generations. 

After all migration intervals have been accomplished the program examines all current 

member of each population; returning the traits and accuracy of members with the highest 

accurateness. 

 

 

Results 
 

These results are based on running the program with three migration intervals of five 

generations and four populations of eight members. The dataset for this run consisted of 

4,000 puzzles equally distributed across simple, easy, intermediate, and expert difficulties 

in a random order. After about 90 minutes of runtime, the following results were 

produced. 

 

ILA HLN1 HLA1 HLN2 HLA2 OLA 

Population 1 

Tanh 20 Softplus 5 Sigmoid Softsign 

Tanh 7 Softsign 5 Sigmoid Relu 

Tanh 20 Softplus 5 Sigmoid Softsign 

Tanh 7 Softsign 5 Sigmoid Relu 

Tanh 7 Softplus 5 Sigmoid Relu 

Tanh 20 Softplus 5 Sigmoid Relu 

Tanh 20 Softsign 5 Sigmoid Softsign 

Tanh 7 Softsign 5 Sigmoid Relu 

Population 2 

Tanh 20 Softplus 5 Sigmoid Softsign 

Tanh 20 Softsign 5 Sigmoid Softsign 

Tanh 27 Softsign 4 Sigmoid Relu 

Elu 27 Softsign 4 Relu Relu 

Tanh 20 Softsign 5 Sigmoid Softsign 

Tanh 20 Softsign 5 Sigmoid Relu 

Elu 27 Softsign 4 Sigmoid Relu 

Elu 20 Softplus 5 Relu Softsign 

Population 3 

Elu 27 Softsign 4 Relu Relu 

Elu 27 Softsign 4 Relu Relu 

Elu 27 Elu 16 Relu Softplus 

Elu 27 softsign 4 Relu Relu 

Elu 27 softsign 4 Relu Relu 
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Elu 27 Softsign 16 Relu Relu 

Elu 27 Elu 16 Relu Softplus 

Elu 27 softsign 4 Relu Relu 

Population 4 

Elu 27 Elu 16 Relu Softplus 

Elu 27 Elu 4 Relu Relu 

Elu 27 Softsign 16 Relu Relu 

Elu 27 Softsign 4 Relu Relu 

Elu 27 Elu 16 Relu Softplus 

Elu 27 Elu 16 Relu Relu 

Elu 27 Softsign 4 Relu Relu 

Elu 27 Elu 16 Relu Relu 

Table 2: Structure of NN's for each population after last migration interval 

Note: ILA-Input layer activation function, HLN-Hidden layer no. of nodes, 

HLA-Hidden layer activation function, OLA-Output layer activation function 

 

Table 2 shows that the structures of the NNs converge reasonably quickly for small 

populations. In table 3 there is an indication of an increase in accuracy, but given the state 

of the populations after the third migration interval, it seems unlikely to find a design that 

could achieve 90% accuracy without using a much larger population. 

 

Migration Interval 1  Migration Interval 2  Migration Interval 3 

Pop 

1 

Pop 

2 

Pop 

3 

Pop 

4 

 Pop 

1 

Pop 

2 

Pop 

3 

Pop 

4 

 Pop 

1 

Pop 

2 

Pop 

3 

Pop 

4 

.254 .239 .254 .25  .254 .254 .247 .249  .254 .254 .272 .257 

.254 .254 .254 .254  .254 .254 .262 .25  .24 .254 .257 .264 

.254 .254 .249 .248  .254 .253 .000 .245  .254 .000 .251 .264 

.254 .254 .254 .254  .254 .254 .261 .25  .000 .253 .246 .255 

.254 .262 .254 .244  .254 .254 .27 .241  .245 .254 .256 .263 

.254 .254 .251 .268  .254 .259 .000 .242  .240 .251 .262 .000 

.254 .254 .252 .254  .254 .242 .252 .245  .254 .000 .267 .269 

.254 .254 .254 .254  .254 .245 .234 .265  .251 .254 .262 .266 

Table 3: Accuracy of NN's after each migration interval 

 

 

Conclusions 
 

There is much more to be explored. However, it would seem that based on the initial run 

of the program any model following these design constraints might not reach a design 

that will achieve 90% accuracy and if it is possible, the amount of time to find such a 

design in the current iteration of the program will be significant. 
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Future Research 
 

The future goals of this project are to implement the program using parallelism to reduce 

the wall clock time taken for the program to run. Integrate implementations that will 

allow for the use of a softmax activation function, which is based on logit, and outputs a 

probability matrix rather than a single value and could work better for classification.  
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Appendix A: Algorithms 

 
A.1 build_model(info[0,..,6]): 
     instantiate a model 

     add input layer to model 

     add a hidden layer 1 to the model  

     add a hidden layer 2 to the model 

     add output layer to model 

     return model 

 

A.2 get_predictors(train): 

     instantiate a list called data 

     instantiate a numpy array of 36 zeros called inputs 

     open a file stream for train called file 

     initialize a csv reader for file called reader 

     for each row in the reader: 
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         save current row as sort 

         for each number in sort: 

             if the number is not zero: 

                 increment counts in inputs associated with column, row, box, and number  

           add inputs to data 

                      reset inputs 

     return data 

 

A.3 get_targets(train): 

     instantiate a list called targets 

     open a file stream for train called file 

     initialize a csv reader for file called reader 

     for row in reader: 

         add the target value for current row to targets 

                return targets 

 

A.4 cleaner(): 

   instantiate a list called output 

   set to_clean to file name to be converted 

   open a file stream for to_clean called file 

   create a reader to read file 

   set count to 0 

   for row in reader: 

     set orig to row's element 0 

     set sol to row's element 1 

     set grade to row's element 11 

     set new to empty string 

     for row in orig: 

        if character at row is a period: 

          add a 0 to new 

        else: 

          add number at row to new 

     if grade is simple: 

           set grade to 1  

     if grade is easy: 

           set grade to 2  

     if grade is intermediate: 

           set grade to 3  

     if grade is expert: 

           set grade to 4 

     add string of ["count";"new";"sol";"grade"] to output 

     increment count by 1 

   open a writer to write to a file "to_clean"clean.csv 
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   for each row in output: 

     write row to file using writer 

   return 

 

A.5 gen_pop(pop_size): 

   instantiate a list called population 

   for i from 0 to pop_size: 

     set ila, ola, hla1, hla2 to a random number between 0 and 9 

     set hln1, hln2 to a random number between 1 and 36 

     add a list of form [ila, hln1, hla1, hln2, ola] to population 

   return population 

 

A.6 fitness(population, predictors, targets): 

   instantiate a list called evaluated 

   instantiate an early stopping monitor  

   for each member in population 

     instantiate test_model using build_model() with parameters specified by member 

     compile test_model 

     set model_training to the record accuracy ratings from fitting test_model 

    add member traits concatenated with last element of model_training to evaluated 

   return evaluated 

 

A.7  selection(pop) 

   instantiate a list called selected 

   set i to 0 

   while there are at least two members left in the pop: 

     if the current member's accuracy is greater than the next member: 

       add current member to selected 

     else: 

       add next member to selected 

     increment i by two 

   return selected 

 

A.8  breed(pop): 

   copy pop into a new list called new_pop 

   instantiate a list called child 

   for each member in pop: 

     create a list of mutations 

     set parent 1 to current member 

     if there is a member left in pop: 

       set parent 2 to the next member 

     else: 

       set parent 2 to the first member of pop 
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     for each trait: 

       set contrib to parent 1 or 2 randomly 

       if contrib is parent 1: 

         copy current trait from parent 1 to child 

       if contrib is parent 2: 

         copy current trait from parent 2 to child 

       if a random number between 1 and 1000 is less than 10: 

         choose a random trait 

         replace trait in child with trait from mutations 

       add child to new_pop 

       reset child 

   return new_pop 

 

A.9  migration(record, populations, pop_size): 

   instantiate a lists called new_record, migrators, and stayed 

   for each population: 

     set start to the start of the current population in record 

     copy population to a list called pop 

     set keep to a quarter of pop_size 

     instantiate lists called currentM and currentS 

     while keep is greater than 0: 

       set idW and idS to 0 

       for each member of pop: 

         if the current member's accuracy is less that the member at idW: 

           set idW to the current members index 

         if the current members's accuracy is greater than the member at idS: 

           set idS to the current members index 

         add member at index idW in pop to currentM 

         add member at index idS in pop to currentS 

         delete members at indices idW & idS from pop 

         decrement keep by 1 

     add currentM and currentS to migrators 

     reset currentM and currentS 

   for each population: 

     if the current population is the last population: 

       create a list called temp using stayed of current pop and migrators of first pop 

     else: 

       create a list called temp using stayed of current pop and migrators of next pop 

     breed temp 

     for each member in temp: 

        add member to new_record 

   return new_record  


