
1

Using Deep Learning to Examine the Classification of

Historical Data Through Neural Networks: The Sudoku

Puzzle

Ashby Mullin

Department of Information of Science and Technology

Doane University

1014 Boswell Ave. Crete, NE 68333

ashby.mullinconant@doane.edu

Abstract

Since there are several methods for determining the difficulty of any given Sudoku puzzle,

correctly classifying a puzzles difficulty can be challenging. This research project seeks to

generate a neural network capable of classifying Sudoku problems within a given scheme.

This study focuses on using supervised learning techniques in conjunction with genetic

algorithm methods implemented using the Keras and Numpy modules in a Python 3

environment. This paper will discuss the acquisition and manipulation of data for use in

training neural networks, the automatic construction of neural networks, evolving

populations of neural networks with genetic algorithm concepts, and how each contributes

to generating a neural network that can best classify the difficulty of Sudoku puzzles.

2

Introduction

Sudoku is a logic puzzle enjoyed for the simplicity of rules, yet complexity and challenge

of gameplay. Since there are several methods to solve a puzzle, accurately determining the

level of difficulty of any given Sudoku puzzle can be challenging. This challenge has

sparked interest in developing ways to compute the complexity of Sudoku puzzles.

Dissention exists in the field with some individuals determining difficulty based on

algorithmic or strategic techniques while others rely on human perceptions of difficulty

and average time taken to solve puzzles. Some work has been done using genetic

algorithms to solve and rate puzzles (Mantere & Koljonen, 2007), identifying challenges

with efficacy. This challenge provides a unique opportunity to test machine learning

through Neural Networks (NN).

A NN’s ability to accurately and consistently categorize Sudoku puzzles into specific bins

of difficulty given a pre-existing classification scheme would allow for the comparison of

various classifications schemes. Previous research on NN’s has looked at solving Sudoku

puzzles (Mladenov, Karampelas, Pavlatos, Zirintsis, 2011), however, little work has

explored combining NN with genetic algorithms to rate the difficulty of Sudoku puzzles.

To that end, this research project seeks to generate a NN capable of correctly classifying

Sudoku problems in a given scheme with above 90% accuracy given an unsolved Sudoku

problem. While there are many ways to establish and evolve a NN, this study focused on

using supervised learning techniques in conjunction with an island model genetic algorithm

implemented using the Keras and Numpy modules in a Python 3 environment. The island

model is especially appropriate for this type of study because the sparse research conducted

combining NN’s and evolutionary computation towards this categorization Sudoku

problem.

Background & Conceptual Framework

Neural Networks

As research around NN’s develops down divergent and convergent paths of research, it

becomes imperative to define some parameters for this study and terms used moving

forward consisting of NN’s and genetic algorithms used for this study. We operationalize

Neural Networks in multiple component parts noted in table 1.

3

Component Description

Layer A collection of nodes that will propagate information forward in the NN

Node Take in inputs from the previous layer and applies an activation function

Activation

Function

A mathematical expression that will transform the inputs to a node into

an output for the next layer

Weight A value that adjusts inputs to a node, indicating the node's significance

Table 1: Components of a Neural Network

Since the goal was to develop a NN that was capable of learning an existing classification

scheme, a supervised learning approach was chosen. This approach involves using a

labeled dataset, one that has already been classified, to train an NN. Characteristics of the

data, called predictors, are used as inputs for the NN. The NN will process these inputs to

produce an output value, which is considered the prediction. That prediction is compared

to the expected value, also known as the target value or the label. The difference between

the two is measured as error, and through back propagation, the weights are updated, and

the NN continues this process with the next point in the dataset.

Genetic Algorithms

A genetic algorithm is a type of evolutionary computation where we have a population of

objects, called members. Each member is defined by a list of traits, which are values that

describe the object. A basic GA follows the following sequence of events: (Sivanandam &

Deepa, 2008)

1) Create an initial random population

2) Evaluate fitness for the population

3) Store best individual

4) Create a mating pool

5) Create the next generations

6) if the optimal solution is found, stop

7) otherwise reproduce

8) perform mutation

The idea behind the island model is to have several populations that evolve, using a GA,

independently for a set amount of generations called the migration interval. Then perform

a migration where members from one population move to another. This helps to prevent

premature convergence in any of the populations.

4

Developing the Program

Designing the NN and Processing Data

It would be possible to build a NN from the ground up. Specifying the arrays that would

contain input values from and those that would contain the weights. This would also require

specifying the activation function that would transform the inputs into outputs.

Alternatively, there are several modules that can be used to assist with the creation of NNs

such as SciKit-learn, Keras, and Tensor Flow. Keras was chosen because it allowed the

specification of NN parameters without the need to write the code for every object of the

NN (figure 1). Also, Keras has several activation functions readily available within the

module. The build_model(A.1) algorithm in Appendix A was designed to generate an NN

using passed in parameters.

Figure 1: Visualization of Neural Network

Additionally, a sufficiently large data set of already graded puzzles would need to be

vectorized. Meaning, that critical characteristics need to be chosen as predictors (inputs for

the NN) and a method devised for extracting the predictors from the data set as a vector of

information. The characteristics chosen to be used as predictors were the numbers given in

an unsolved puzzle, known as givens. To this end, get_predictors (A.2) was designed to

capture the givens as the number provided in each column, row, box, and number class.

The parameter passed to this algorithm is a csv of strings containing the puzzle id, unsolved

puzzle, solved puzzle, and difficulty delimited by a semi-colon. Additionally,

get_targets(A.3) was designed to create a vector of the target values for use in the training

process.

5

Acquiring a better set of training data

The initial dataset had 30,000 sudoku problems classified as very easy or easy. An entity

classifying sudoku puzzle rarely uses only two classifications especially ones so close

together. This realization instigated a search for a data set with a greater range of

difficulties. Which, led to the discovery of a sudoku generator called QQWing Sudoku

(Ostermiller) that would create and grade the difficulty based on algorithmic techniques

and heuristics discovered during while solving the puzzle. This generator provided

advantages by allowing for the generation of simple, easy, intermediate, and expert level

puzzles either randomly or at a specified level. Additionally, this program enabled the

generation of as many puzzles as needed to build a data set and could write them to csv.

One issue which arose was the string output by the generator used periods instead of zeros

to denote blank spaces in the unsolved puzzle. Also, the grades were provided as words as

opposed to numerical values. Algorithm A.4 was designed to convert the new format of

the data to the schema used in the initial dataset.

Implementing a Genetic Algorithm

At this point, the program was able to generate an NN capable of training on data sets given

the parameters of the NN were specified. The first attempt at finding involved set intervals

of parameters and testing each combination. This took multiple trials, time, and effort

resulting in no indications to which direction the parameters should be adjusted. Even with

the design constraints of having two hidden layers, and no layer having more than 36 nodes,

the search space contained 8,503,056 permutations. Thus, it was decided that a GA should

be used to reduce the amount of time searching for the optimal design. The first step was

design and implementation of the generation function (A.5) that would generate a

population. This algorithm generates random parameters and constructing them into an

array that will be returned and housed in an array of members.

This array of members is then used in fitness(A.6), an algorithm that iterates through each

member building and training an NN using the traits of the member. The fitness algorithm

will then return an array with each member's traits with the training accuracy concatenated

to the end of the list of traits. The array with the accuracies is then passed to a

selection(A.7), which use tournament selection. This a selection method where the fitness

of two members is compared using their accuracies, and the member with higher accuracy

is kept in the population.

Once a list of stronger members has been compiled, the list is passed to the breed algorithm

(A.8). Breed runs through the members passed in and selects two to be parents that will

create a child member. The child member is created by going through and randomly

selecting a trait from one of the parents to fill the trait of the child. The child also has a

.001 chance of mutating where a random trait is selected and then replaced with a new

random value. This creates a new population and completes the generation. This cycle will

repeat for a specified number of generations, known as migration interval. At the end of

6

the current migration interval, a list of all current member in each population is compiled,

a migration (A.9) algorithm will select the strongest quarter of each population to stay, the

weakest quarter will migrate, be removed from the current population and added to another

population. After the migration, the breed algorithm will be run on the new populations,

and the next migrations interval will begin and continue for the set number of generations.

After all migration intervals have been accomplished the program examines all current

member of each population; returning the traits and accuracy of members with the highest

accurateness.

Results

These results are based on running the program with three migration intervals of five

generations and four populations of eight members. The dataset for this run consisted of

4,000 puzzles equally distributed across simple, easy, intermediate, and expert difficulties

in a random order. After about 90 minutes of runtime, the following results were

produced.

ILA HLN1 HLA1 HLN2 HLA2 OLA

Population 1

Tanh 20 Softplus 5 Sigmoid Softsign

Tanh 7 Softsign 5 Sigmoid Relu

Tanh 20 Softplus 5 Sigmoid Softsign

Tanh 7 Softsign 5 Sigmoid Relu

Tanh 7 Softplus 5 Sigmoid Relu

Tanh 20 Softplus 5 Sigmoid Relu

Tanh 20 Softsign 5 Sigmoid Softsign

Tanh 7 Softsign 5 Sigmoid Relu

Population 2

Tanh 20 Softplus 5 Sigmoid Softsign

Tanh 20 Softsign 5 Sigmoid Softsign

Tanh 27 Softsign 4 Sigmoid Relu

Elu 27 Softsign 4 Relu Relu

Tanh 20 Softsign 5 Sigmoid Softsign

Tanh 20 Softsign 5 Sigmoid Relu

Elu 27 Softsign 4 Sigmoid Relu

Elu 20 Softplus 5 Relu Softsign

Population 3

Elu 27 Softsign 4 Relu Relu

Elu 27 Softsign 4 Relu Relu

Elu 27 Elu 16 Relu Softplus

Elu 27 softsign 4 Relu Relu

Elu 27 softsign 4 Relu Relu

7

Elu 27 Softsign 16 Relu Relu

Elu 27 Elu 16 Relu Softplus

Elu 27 softsign 4 Relu Relu

Population 4

Elu 27 Elu 16 Relu Softplus

Elu 27 Elu 4 Relu Relu

Elu 27 Softsign 16 Relu Relu

Elu 27 Softsign 4 Relu Relu

Elu 27 Elu 16 Relu Softplus

Elu 27 Elu 16 Relu Relu

Elu 27 Softsign 4 Relu Relu

Elu 27 Elu 16 Relu Relu

Table 2: Structure of NN's for each population after last migration interval

Note: ILA-Input layer activation function, HLN-Hidden layer no. of nodes,

HLA-Hidden layer activation function, OLA-Output layer activation function

Table 2 shows that the structures of the NNs converge reasonably quickly for small

populations. In table 3 there is an indication of an increase in accuracy, but given the state

of the populations after the third migration interval, it seems unlikely to find a design that

could achieve 90% accuracy without using a much larger population.

Migration Interval 1 Migration Interval 2 Migration Interval 3

Pop

1

Pop

2

Pop

3

Pop

4

 Pop

1

Pop

2

Pop

3

Pop

4

 Pop

1

Pop

2

Pop

3

Pop

4

.254 .239 .254 .25 .254 .254 .247 .249 .254 .254 .272 .257

.254 .254 .254 .254 .254 .254 .262 .25 .24 .254 .257 .264

.254 .254 .249 .248 .254 .253 .000 .245 .254 .000 .251 .264

.254 .254 .254 .254 .254 .254 .261 .25 .000 .253 .246 .255

.254 .262 .254 .244 .254 .254 .27 .241 .245 .254 .256 .263

.254 .254 .251 .268 .254 .259 .000 .242 .240 .251 .262 .000

.254 .254 .252 .254 .254 .242 .252 .245 .254 .000 .267 .269

.254 .254 .254 .254 .254 .245 .234 .265 .251 .254 .262 .266

Table 3: Accuracy of NN's after each migration interval

Conclusions

There is much more to be explored. However, it would seem that based on the initial run

of the program any model following these design constraints might not reach a design

that will achieve 90% accuracy and if it is possible, the amount of time to find such a

design in the current iteration of the program will be significant.

8

Future Research

The future goals of this project are to implement the program using parallelism to reduce

the wall clock time taken for the program to run. Integrate implementations that will

allow for the use of a softmax activation function, which is based on logit, and outputs a

probability matrix rather than a single value and could work better for classification.

References

Becker, D., Bowne-Anderson, H., & Roy, Y., (2018). Deep Learning in Python.

Retrieved from https://www.datacamp.com/courses/deep-learning-in-python

Mantere, T., & Koljonen, J. (2007, September). Solving, rating and generating Sudoku

puzzles with GA. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress

on (pp. 1382-1389). IEEE.

Mladenov, V., Karampelas, P., Pavlatos, C., & Zirintsis, E. (2011). Solving sudoku

puzzles by using hopfield neural networks. Proc. of ICACM, 11, 174-179.

Ostermiller, S. (2014). QQWing sudoku. Retrieved from https://qqwing.com/

Sivanandam, S. N., & Deepa, S. N. (2007). Introduction to genetic algorithms. Springer

Science & Business Media.

Whitley D., Rana S., Heckendorn R.B. (1997). Island model genetic algorithms and

linearly separable problems. In: Corne D., Shapiro J.L. (eds) Evolutionary

Computing. AISB EC 1997. Lecture Notes in Computer Science, 1305. Springer,

Berlin, Heidelberg. doi:10.1007/BFb0027170

Appendix A: Algorithms

A.1 build_model(info[0,..,6]):
 instantiate a model

 add input layer to model

 add a hidden layer 1 to the model

 add a hidden layer 2 to the model

 add output layer to model

 return model

A.2 get_predictors(train):

 instantiate a list called data

 instantiate a numpy array of 36 zeros called inputs

 open a file stream for train called file

 initialize a csv reader for file called reader

 for each row in the reader:

9

 save current row as sort

 for each number in sort:

 if the number is not zero:

 increment counts in inputs associated with column, row, box, and number

 add inputs to data

 reset inputs

 return data

A.3 get_targets(train):

 instantiate a list called targets

 open a file stream for train called file

 initialize a csv reader for file called reader

 for row in reader:

 add the target value for current row to targets

 return targets

A.4 cleaner():

 instantiate a list called output

 set to_clean to file name to be converted

 open a file stream for to_clean called file

 create a reader to read file

 set count to 0

 for row in reader:

 set orig to row's element 0

 set sol to row's element 1

 set grade to row's element 11

 set new to empty string

 for row in orig:

 if character at row is a period:

 add a 0 to new

 else:

 add number at row to new

 if grade is simple:

 set grade to 1

 if grade is easy:

 set grade to 2

 if grade is intermediate:

 set grade to 3

 if grade is expert:

 set grade to 4

 add string of ["count";"new";"sol";"grade"] to output

 increment count by 1

 open a writer to write to a file "to_clean"clean.csv

10

 for each row in output:

 write row to file using writer

 return

A.5 gen_pop(pop_size):

 instantiate a list called population

 for i from 0 to pop_size:

 set ila, ola, hla1, hla2 to a random number between 0 and 9

 set hln1, hln2 to a random number between 1 and 36

 add a list of form [ila, hln1, hla1, hln2, ola] to population

 return population

A.6 fitness(population, predictors, targets):

 instantiate a list called evaluated

 instantiate an early stopping monitor

 for each member in population

 instantiate test_model using build_model() with parameters specified by member

 compile test_model

 set model_training to the record accuracy ratings from fitting test_model

 add member traits concatenated with last element of model_training to evaluated

 return evaluated

A.7 selection(pop)

 instantiate a list called selected

 set i to 0

 while there are at least two members left in the pop:

 if the current member's accuracy is greater than the next member:

 add current member to selected

 else:

 add next member to selected

 increment i by two

 return selected

A.8 breed(pop):

 copy pop into a new list called new_pop

 instantiate a list called child

 for each member in pop:

 create a list of mutations

 set parent 1 to current member

 if there is a member left in pop:

 set parent 2 to the next member

 else:

 set parent 2 to the first member of pop

11

 for each trait:

 set contrib to parent 1 or 2 randomly

 if contrib is parent 1:

 copy current trait from parent 1 to child

 if contrib is parent 2:

 copy current trait from parent 2 to child

 if a random number between 1 and 1000 is less than 10:

 choose a random trait

 replace trait in child with trait from mutations

 add child to new_pop

 reset child

 return new_pop

A.9 migration(record, populations, pop_size):

 instantiate a lists called new_record, migrators, and stayed

 for each population:

 set start to the start of the current population in record

 copy population to a list called pop

 set keep to a quarter of pop_size

 instantiate lists called currentM and currentS

 while keep is greater than 0:

 set idW and idS to 0

 for each member of pop:

 if the current member's accuracy is less that the member at idW:

 set idW to the current members index

 if the current members's accuracy is greater than the member at idS:

 set idS to the current members index

 add member at index idW in pop to currentM

 add member at index idS in pop to currentS

 delete members at indices idW & idS from pop

 decrement keep by 1

 add currentM and currentS to migrators

 reset currentM and currentS

 for each population:

 if the current population is the last population:

 create a list called temp using stayed of current pop and migrators of first pop

 else:

 create a list called temp using stayed of current pop and migrators of next pop

 breed temp

 for each member in temp:

 add member to new_record

 return new_record

