
The Benchmarking Programming Exam and SOA in
Introductory Programming Courses

J. Philip East and Andrew Berns
Computer Science Department
University of Northern Iowa
Cedar Falls, IA 50614-0507

east@cs.uni.edu, adberns@cs.uni.edu

Abstract

Assessing student learning or outcomes in higher education instruction is becoming a
requirement for all programs and most courses and is increasingly being examined by the
Higher Learning Commission as it conducts its institutional accreditation reviews. One
way to assess outcomes is through the administration and scoring of a well-designed
exam. For introductory programming courses, however, few publicly-available such
exams exist. While seemingly developed for teachers of computer science, the Praxis
exam in computer science is a possible method for assessing student programming
capability. However, it is a commercial product, covers more than introductory
programming, and cannot be easily incorporated into regular course assessment, e.g. final
exams. An alternative would be to include benchmarking questions produced by Simon
et al. These questions are easy to include in a final exam, are relatively easy to grade, and
test many of the basic coding elements of programming. By themselves, however, these
benchmarking questions do not measure the higher level of comprehension we wish
introductory students to have.

In this paper, we propose combining the benchmarking questions of Simon et al. with
another measure of programming capability to produce a very effective student outcomes
assessment (SOA) instrument. With some care, this combination can provide a measure
appropriate for assessing student capability in the current course and for comparing
instruction from: semester to semester, instructor to instructor, or course to course.

0

1 Background

Student outcomes assessment (SOA) has been a topic of discussion and concern for about
20 years. Having an SOA plan in effect is now required for accreditation by the Higher
Learning Commission [4]. The goal of this requirement is for there to be an assessment
that allows for data-driven decisions about possible course revisions which improve
student learning in each course and program. The Commission’s website [4] states:

4.B. The institution demonstrates a commitment to educational achievement and
improvement through ongoing assessment of student learning.

1. The institution has clearly stated goals for student learning and effective
processes for assessment of student learning and achievement of learning goals.

2. The institution assesses achievement of the learning outcomes that it claims for
its curricular and co-curricular programs.

3. The institution uses the information gained from assessment to improve student
learning.

4. The institution's processes and methodologies to assess student learning reflect
good practice, including the substantial participation of faculty and other
instructional staff members.

Clearly, it is intended that we develop sets of goals/outcomes for our courses, devise and
administer assessments of student performance relative to these goals, and use data from
the assessments to improve instruction. A key to success in this endeavor is the
assessment instrument.

There are several commercial and private exams for computer science. The Computer
Science Field Exam from ETS [3] is an instrument that can be used to evaluate a CS
program or areas within a program. While some areas of the exam may map to specific
upper division courses, it does not contain questions which are appropriate for students in
introductory programming courses. Designed for computer science teachers, the Praxis
exam in computer science [2] more directly addresses introductory programming topics,
but it also addresses additional topics from data structures and computer organization that
do not relate to introductory programming. Tew and Guzdial developed and validated the
Foundational CS1 (FCS1) assessment [8] which considered concepts specific to CS 1. In
particular, Tew and Guzdial identified the following concepts for the FCS1 ([7], p.100):

The final list of constructs which serve as the basis of the test specification are as follows:
• Fundamentals (variables, assignment, etc.)
• Logical Operators
• Selection Statement (if/else)
• Definite Loops (for)
• Indefinite Loops (while)
• Arrays
• Function/method parameters

• Function/method return values
• Recursion
• Object-oriented Basics (class definition, method calls)

Unfortunately, the instrument from Tew and Guzdial is not publicly available.

Currently, there appear to be no general assessment instruments designed explicitly for
introductory programming that can serve to provide data useful in analyzing student
learning for the purpose of SOA to improve instruction in introductory programming
classes.

2 A Suggested Process/Mechanism

While we have not encountered a fully developed and freely available SOA
instrument/process, we have found other work that can form part of an SOA instrument.
Simon et al. [5] devised a “benchmarking” exam specifically to be used in introductory
programming courses. It can be used to assess basic concepts and skills. We believe it is
a good start toward a quality SOA process for introductory programming.

2.1 The Benchmarking Items

The benchmarking assessment tool of Simon et al. [5] was designed and developed by
faculty from a number of disparate courses that were offered in different programming
languages at seven different institutions in five different countries. The instrument
consists of ten items addressing common programming concepts that can be included in
the final exam for the course, forming an estimated fourth of the exam. Thus, individual
faculty may include assessment items beyond the ten benchmark questions for use in
assigning student grades. Additionally, the benchmarking items can be graded in any
manner individual instructors wish for the purpose of assigning grades. For comparing
results between courses and schools, however, the benchmarking items need to be treated
identically. Thus, in addition to developing items for the instrument, the authors also
produced detailed marking guidelines for them. If/when one wishes to compare
outcomes, the authors’ marking guidelines would be followed. Guidelines were
developed for several programming languages: Java, Python, C, and Visual Basic.1

1 We received the marking guidelines by requesting them from the first author, Simon, and would be happy
to pass them along.

2

In the marking guidelines document for Visual Basic the items are described in several
ways ([6], p.1):

Here is the breakdown of question forms:
• multiple choice (4 questions)
• short answer (3 questions)
• written code (3 questions)

The questions are loosely grouped into the following topic areas:
• expressions (1 question)
• assignment and sequence (1 question)
• swapping and shifting (1 question)
• selection (2 questions)
• iteration and arrays (5 questions)

The questions cover a variety of skills:
• tracing code (5 questions)
• explaining code (2 questions)
• writing code (2 questions)
• modifying code (1 question)

The benchmarking questions can be further understood by considering where they fit in a
taxonomy considering both the topic and the cognitive level of the question. We analyzed
each of the ten benchmarking questions to determine which of the constructs presented
by Tew and Guzdial [7] were required to answer each question. The mapping from
benchmark questions to constructs is given in Table 1.

Question
Number

Construct

1 Fundamentals, Logical Operators

2 Fundamentals

3 Fundamentals

4 Fundamentals, Logical Operators, Selection

5 Fundamentals, Logical Operators, Selection

6 Fundamentals, Logical Operators, Selection, Indefinite Loops

7 Fundamentals, Selection Statement, Definite Loops, Arrays

8 Fundamentals, Definite Loops

9 Fundamentals, Definite Loops, Arrays

10 Fundamentals, Definite Loops, Arrays, Function parameters, Function return values

Table 1: Classification of Benchmarking Questions

3

We also considered the level of knowledge that was required to answer each question.
For this, we used the levels from the cognitive domain in Bloom’s taxonomy [1]. As one
might expect, all of the ten questions were at a lower level in Bloom’s taxonomy. In
particular, we classified each question as being at the comprehension level. While it is
true that some questions required students to create code, we note Bloom’s distinction
between comprehension and application: “A demonstration of ‘comprehension’ shows
that the student can use the abstraction when its use is specified. A demonstration of
‘application’ shows that he will use it correctly, given an appropriate situation in which
no mode of solution is specified.” (p. 120).

The benchmarking items address all the constructs suggested by Tew and Guzdial [7]
except recursion and object-oriented elements programming. We therefore feel
comfortable including them in an SOA assessment of our introductory programming
courses. They offer a mechanism whereby student success with specific basic skills can
be assessed. If, for example, students performed below expectations or desired level on
the first item that examines variables, assignment, and sequence the instructor could
review course instruction for possible revision to address some particular issue associated
with that item. The same appears, to us, to be true of the other items. Each provides the
possibility for feedback in the instructional process at a much finer level of granularity
than most final (and many mid-term) exams provide. We feel confident that examining
the results will provide useful feedback for us.2

Our plan for using the benchmark items is to include them in our final exam(s) and check
them in two passes. The first pass will grade the final exam for determining student
grades. At the current time this will essentially follow past practice in grading final
exams. Once grades have been determined and reported a second pass in grading will be
used for SOA purposes. In this second analysis we intend to follow the marking
guidelines of Simon, et al. Initially, we will use two metrics for measuring success. One
measure will be a comparison of our students’ results with the results produced from
other institutions using the benchmark, the scores of which were included in the original
benchmarking paper [5]. We hope to achieve scores similar to other institutions. A
second measure will be our reaction to the results. In particular, we wish to determine if
student performance, as a class, is below our expectations (whatever they were). In both
cases, the action we take will be to examine our instruction for possible
revision/improvement.

As we become more familiar with checking the benchmarking items, we may well start
using a single pass similar to that suggested by Simon, et al. [5]. This lessens the work
required for the SOA, leaving only the extra work of tabulating and analyzing the results.

While the benchmarking items are useful, probably necessary, for providing feedback for
instructional improvement they are not sufficient, i.e., they do not provide insight into the

2 We have included the items in some of our courses but have not yet done any analysis for the purpose of
student outcomes assessment.

4

more general aspects of programming like problem understanding, solution development,
and code production, nor do they measure skills at the application level of Bloom’s
taxonomy. Our view of programming pedagogy is that students’ conceptual
understanding and skill as exemplified by these benchmarking items is a prerequisite to
more general programming capability. Any SOA instrument would need to include
assessments of such student capabilities. The discussion below addresses that additional
piece of the SOA puzzle.

2.2 And a Programming Problem

We believe that if you want students to learn to program you must provide them with
minimally-specified problems to program. A reasonable conclusion based on that belief
is that to assess programming ability, you must have students attempt to produce a
program for a minimally-specified problem. Clearly, learning to program will require
repeated practice of some sort. The assessment of learning, however, can likely be done
with a single problem so long as its elements have been fully exposed by the repeated
practice and it addresses the bulk (if not all) of the elements of programming.

2.2.1 Elements of Programming

As noted above, Tew and Guzdial [7] provide one perspective as to what constitutes the
basics of programming. We share another perspective with our students, telling them that
programming consists of the following:

• Data and actions
Data is “the” basic of computing: representing a problem as data for the computer
to operate on is key to programming. Once the problem has been represented as
numbers and/or characters (or collections of them), the relationships between data
elements and their manipulation become the focus of programming.

While computer scientists have internalized manipulation-related elements of
programming, novice programmers must explicitly learn them. The actions
on/with data constitute instructions for computers to carry out: input,
manipulation/assignment, and output. There are alternatives for each but the most
involved is manipulations/assignment, which includes notions of data types and
primitive operations and functions.

Students must be able to represent the problem appropriately and determine the
manipulations of the representation that are required to solve the problem.

5

• Organizing the actions via
• Sequence

The first and simplest way to organize actions is to sequence them or put
them in the appropriate order. Instructionally, we often do not even
mention this manner of organizing actions until other ways of doing so are
introduced. Sequence is always critical and becomes more complex as
other organizing schemes are introduced.

• Selection
An additional mechanism for organizing actions for the computer is to
select from two actions or sets of actions. Sometimes the choice may be
to select a set of actions or to do nothing. Sequence continues to be used
and becomes more complex as actions may occur before, after, or within
either choice of the selection construct.

• Repetition
Another mechanism for organizing actions for the computer is to allow
some actions to be repeated. Repetition (in a realistic situation) will often
involve selection and always require sequence as actions must occur in the
appropriate order, whether this be repeated actions or actions occurring
before or after the repeated actions.

• Modularization
Modularization is the creation of new higher-level or programmer-defined
actions. The modules or new instructions created can involve any of the
other organizing mechanisms. It is used as to reduce the amount
information a programmer needs to keep in mind or to reduce the use of
duplicated code.

In short, programming requires “merely” learning the basic actions the computer can
carry out and organizing them appropriately to solve the problem at hand. In terms of
Bloom’s taxonomy, programming requires comprehension of the basic actions of a
computer and alternatives for organizing them and then the application (of that
knowledge/comprehension) to the programming problem at hand.

It seems pedantic (or worse) to include the above material in this paper. The goal of our
doing so is to illustrate our thinking about what needs to be included when assessing
student learning of programming. This is what we want students to be able to do. So,
based on this mindset, what would we include in our question meant to assess student
programming ability?

6

2.2.2 Problem Characteristics

Our goal with respect to SOA is actually to produce a set of moderately-sized problems
from which we can randomly select a single problem to use on a final exam. The
problems need to 1) be “equivalent”, 2) reflect the content of the course, and 3) exercise
most if not all of the fundamental elements of programming. As we contemplated the
problems, we worked to characterize what the problems would be and what they should
include. Eventually we concluded that the problems would have the following
characteristics:

• Be non-trivial, but not complex, and be minimally-specified so as to require some
interpretation and consideration of data to represent the problem—application of
programming knowledge.

• Require sequence, selection, and repetition, but not modularization as problem
size/complexity would typically not reasonably require modularization. The
problem’s solution should use repetition twice, either as repetition following
repetition or a simple nesting of repetition within repetition.

• Involve a collection (accessed via an index) of either string or numeric data and
the use of indexing for actions beyond simple traversal of all elements in the
collection. This increases the likelihood of non-trivial problems and adds a bit of
complexity to problem representation.

• Include selection within at least one instance of the repetition to increase the
complexity of the algorithm needed for the solution.

• Include either file input or output to aid in devising realistic problems that require
collections, repetition, and selection.

We sought to develop a set of at least five problems that could be shared with students as
examples of the kinds of problems for which they should be able to write programs for at
the end of the course.

One of us (Philip) has used problems like this in the past as part of the final exam. We
intended to use this list of problems as part of this paper. However, when we analyzed
the problems we discovered that they were not comparable problems. We therefore
generated a new list of problems which appears in Appendix A.

2.3 Administering the Final Exam (& SOS Assessment)

For us, the final exam is the same as the SOA assessment. We desire particular outcomes
for the course and both the exam (for “grading” students) and the SOA (for “grading” the
instruction) can reasonably be the same. The students are informed of the nature of the
final in a document describing, in general, the benchmarking portion of the exam and
listing a larger number of sample programming problems. They are told that the exam
will consist of the 10 items assessing basic skills and concepts and that there will be a

7

programming problem similar to those shown. Typically, the programming problem will
be taken from the list provided the students. (If the students decide to crib for the exam
by programming all the problems, so much the better.)

The goal of the exam is to check to see if students can demonstrate the desired
performance outcomes. Thus, the exam is closed-book and closed-notes. We check the
program code produced by the students for conceptual and semantic understanding, not
syntactic correctness. As with the benchmarking items, marking the program for student
grading need not be the same as marking for SOA purposes. We tend to be more holistic
when examining student responses for purposes of assigning grades. A detailed analysis
of the responses, however, is called for when assessing for SOA purposes.

2.4 An SOA Analysis Rubric

A rubric is required to effectively and consistently determine which elements of
programming students can appropriately apply in solving the given problem. Below we
provide a high-level rubric which identifies the elements of a generic solution to our
problems that can be considered to measure student learning. This rubric is intentionally
general so as to apply to all of our problems.

As a note, we have not yet administered an exam with our problems and obviously have
not had the chance to use our rubric. We welcome any feedback regarding the rubric.

A solution should include the following elements, grouped by “type”:
• File-related

o File is properly opened and closed
o Code for reading from and writing to the file is located appropriately (e.g.

within repetition)
• Selection

o Correct Boolean expression used
o Appropriate conditional structure selected (if-then vs if-then-else vs …)
o Appropriate action(s) taken for each outcome
o Actions are not unnecessarily repeated

• Repetition
o Correct continuation/halting condition
o Actions repeated where appropriate
o No unnecessary actions repeated

• Sequencing actions
o Appropriate actions taken before and after repetition
o Correct sequence of actions performed within repetition:

 Before, inside all outcomes, and after selection
• Correct non-trivial use of an index into the collection

8

3 Summary

We have discussed and described combining a comprehension-based assessment of
introductory programming with an application-level assessment to produce an SOA
(student outcomes assessment) instrument. In so doing we noted the current lack of an
appropriate instrument for introductory programming courses and the existence of the
benchmarking items suggested by Simon et al. While useful, the benchmarking exam
cannot be the sole assessment of programming skill as it tests only comprehension and
not the application of programming knowledge to produce programs for minimally-
specified problems (a key goal in most programming courses). We suggest adding a
single programming problem to the benchmarking items to produce an instrument that
can serve as both a final exam and an SOA instrument, albeit with perhaps separate
making schemes for each purpose. Characteristics of the problem are indicated along
with a suggested marking scheme. Sample problems are also provided.

The goal of SOA is to improve instruction. An appropriate SOA instrument can be used
in a variety of scenarios. Its first use would be to determine or set performance levels
considered as constituting success in the course. After establishing baseline performance
and student population characteristics, the SOA results can be used to judge both specific
and overall indications of instructional success. Areas of difficulty can be identified and
revisions to instruction made and ultimately tested. Those interested in testing alternative
pedagogical approaches can use the same instrument to compare current student
outcomes with the historical/baseline values (updating the baseline at the same time).
Schools often have different programming courses. The proposed instrument could be
used to compare outcomes in those courses. There is already a baseline for the
benchmarking portion of the instruction across languages, institutions, and countries with
which one can compare outcomes. When/if the programming problems become more
widely used a more comprehensive assessment of student outcomes can be made.

The goal of this paper has been to suggest one possibility for gathering quality SOA data
for introductory programming courses/experiences. Using an SOA instrument will allow
for data-based decisions about programming instruction in addition to the instructors’
sense of the success of the course. We do not wish to belittle instructor intuition, we
simply suggest that we not rely on it alone when making decisions about teaching and
learning.

9

4 References

[1] Bloom, B.S., A Taxonomy of Educational Objectives: Handbook I: Cognitive
Domain. Longmans, Green and Company, N.Y. 1956.

[2] ETS (Educational Testing Service). The Praxis Study Companion—Computer
Science (5651). Retrieved from https://www.ets.org/praxis/prepare/materials/5651

[3] ETS (Educational Testing Service). The Major Field Test for Computer Science.
Retrieved from https://www.ets.org/mft/about/content/computer_science

[4] HLC (Higher Learning Commission). Criteria for Accreditation. Retrieved from
https://www.hlcommission.org/Policies/criteria-and-core-components.html

[5] Simon, Sheard, J., D’Souza, D, Klemperer, P., Porter, L. Sorva, J., Stegeman, M. &
Zingaro, D. Benchmarking Introductory Programming Exams: Some Preliminary
Results. ICER'16, September 8-12, 2016, Melbourne, Vic, Australia.

[6] Simon, Sheard, J., D’Souza, D, Klemperer, P., Porter, L. Sorva, J., Stegeman, M. &
Zingaro, D. Benchmarking programming exam questions (Visual Basic version).
Received by request from an author (Simon).

[7] Tew, A.E. & Guzdial, M. Developing a Validated Assessment of Fundamental CS1
Concepts. SIGCSE’10, March 10-13, 2010, Milwaukee, WI, USA

[8] Tew, A.E. & Guzdial, M. The FCS1: A Language Independent Assessment of CS1
Knowledge. SIGCSE’11, March 9-12, 2011, Dallas, TX, USA

10

Appendix A

Sample Problems for Final Exam & SOA

Process the scores recorded in a file (scores.txt) to calculate their mean and report:
1) the mean, 2) the number of scores above mean, 3) the number of scores below mean,
and 4) the median. Process the file one time only. (Note: the mean is the sum of the
scores divided by the count of scores and the median is the middle score when the count
is odd and the mean of the two middle scores when the count is even.)

Process lines in a file of text to report the message hidden inside by a cipher. The
message consists of all the characters that appear after a space in the original text
(including spaces that occur after a space).

Process a file of words and word counts that are sorted by word count values. The goal is
to produce a file of non-stop words (words to be included) in a word cloud. The top and
bottom 10% of the words and any words with the same counts as those are stop words.
Process the file one time only.

Provide drill and practice on states and capitals until the user responds with “stop”. The
state and capital values are in a file (states.txt) as comma separated values with one
state and capital per line. Randomly select a state to present and check the user’s
response for correctness. When halting, report the percentage of state and capital pairs
the user correctly identified.

Process a list of words to count occurrences of various lengths of words. Report the non-
zero occurrences in increasing order of word length. Assume a maximum word length of
50 characters.

11

	[4] HLC (Higher Learning Commission). Criteria for Accreditation. Retrieved from https://www.hlcommission.org/Policies/criteria-and-core-components.html

