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Abstract 
 

In nonlinear dynamical systems, long-term prediction is extremely challenging. Small 
perturbations in an initial state can grow exponentially in time and result in large differences in a 
later advanced state - a behavior known as ​chaos.​ Chaotic systems tend to have sensitive 
dependence on initial conditions, much like the Butterfly Effect. Recurrent Neural Networks are 
dynamic and allow for modeling of chaotic behavior. In this paper, we study and investigate the 
the modeling and prediction abilities of a Long Short-Term Memory (LSTM) recurrent neural 
network in dynamical systems with chaotic behavior. In particular, we explore the Lorenz 
System - which comprises of a nonlinear system of differential equations describing 
two-dimensional flow of a fluid, and describe an architecture that models the systems’ behavior.  
  
Keywords:​ Chaos, Dynamical Systems, Nonlinear Differential Equations, Long Short-Term 
Memory RNN, Lorenz System, Recurrent Neural Networks. 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 Introduction 
 
In the early 1960s, MIT meteorologist Edward Lorenz published his paper, ​Deterministic 
Nonperiodic Flow ​[1], in which he showed that “a small change in one state of a deterministic 
nonlinear system can result in large differences in a later state”. This sensitive dependence on 
initial conditions is known as the ​Butterfly Effect​ in Chaos Theory. Lorenz described a system of 
nonlinear differential equations that modeled thermally induced fluid convection in the 
atmosphere. The significance of the Lorenz System was that relatively simple systems could 
exhibit complex (chaotic) behavior.  
 
Predicting the future behavior of  a dynamic system involves recording and analysing the results 
of the system over time. These observations, taken at regular time intervals, form what is known 
as a time series. The estimation of one or several future values of a time series is commonly done 
using just the information given by the past values of the time series. However, the Lorenz 
System demonstrates chaotic and random behavior, which makes it extremely hard to predict 
long-term as small perturbations in the initial conditions are amplified exponentially with time 
[2, 3]. Mathematical models, such as Artificial Neural Networks (ANN), are often used for 
making approximate predictions in dynamic systems.  
 
Studies on predicting and modeling chaotic systems using ANN date back to almost a decade 
ago with the work of Woolley et al [4]. In 2009, the authors carried out a study to determine 
whether artificial neural networks (ANN) can be used to forecast the outputs of nonlinear 
dynamic systems. They used the Lorenz System to generate a chaotic data set, on which the 
ANN with Nonlinear Autoregressive Moving Averages with Exogenous input (NARMAX) was 
trained. Lyapunov exponents, phase diagrams and statistical analyses were used to evaluate the 
neural network output and compare it to the actual Lorenz System. Their work largely inspired 
this paper. 
 
[5] suggests a recurrent NN-based AutoRegressive Moving Average (ARMA) model that 
performs much better in modeling a Lorenz Chaotic Attractor compared to other equivalent 
linear and feedforward models. The suggested approach also performs much better in 
multi-step-ahead predictions. However, this approach is no longer optimal, given it is almost 13 
years old, and modern techniques that implement Recurrent Neural Networks and LSTM are 
more effective. 
 
Recently, [6] investigated time series forecasting by combining a LSTM network and an 
AutoEncoder (AE) algorithm to capture long-term dependencies across data points and uses 
features extracted from recent observations to simultaneously augment the LSTM, thereby 
significantly improving forecasting on chaotic time series. This was proven to be more accurate 



in predicting both one-step and multi-steps ahead compared to conventional LSTM networks, as 
explored in this paper. 
 
In this paper, we present an investigation of the modeling and prediction abilities of a traditional 
Recurrent Neural Network (RNN) and a “Long Short-Term Memory” (LSTM) RNN, when the 
input signal has a chaotic nature. We study the effectiveness of both networks in modeling the 
Lorenz System and compare their respective one-step ahead predictions. The overall 
organization of this paper is as follows: Section 2 describes the Lorenz System; Section 3 
describes the network models; Section 4 presents the simulations as well as the training and 
testing results. Finally, Section 5 presents the conclusions and possible future work. 
 
2 The Lorenz System 
 
While investigating challenges in accurate weather prediction, Lorenz studied the Navier–Stokes 
equations, which describe the relationship among the pressure, temperature, and density in a 
moving fluid [3]. Lorenz described a model in which a fluid flows in a container whose top and 
bottom surfaces are cooled and heated respectively to create a temperature gradient similar to the 
atmosphere. As the gradient increased, he noted that the fluid transitioned from stationary to 
steady to chaotic flow. As a result of his study, he came up with the following system of 
nonlinear differential equations: 
 

 σ(y )dt
dx =  − x  

(ρ )dt
dy = x − z − y  

y zdt
dz = x − β  

 
The variables x, y, and z represent coordinates in 3-dimensional space and are functions of time; 
that is, x = x(t), y = y(t), and z = z(t).  

x - proportional to the intensity of the convection motion 
y - proportional to the temperature difference between ascending and 
descending currents. 
z - proportional to the difference of the vertical temperature profile from 
linearity.  

The positive parameters sigma (σ), rho(​ρ​), and beta (β) are values Lorenz used to exhibit the 
chaotic behavior of the system when σ = 10.0, ρ = 28.0, β = 8/3. They are respectively 
proportional to the Prandtl number, Rayleigh (or Reynolds) number, and certain physical 
dimensions of the layer itself such as the width to height ratio of the container. Although the 
parameters are usually varied, especially ​ρ, ​we use the same values in our experiment and to 



generate the data, we solve for the Lorenz Equations, augmenting Project Jupyter’s ​Lorenz 
System Notebook​ [7].  
 
First, we import the computation and display functions from the IPython, NumPy, Matplotlib and 
SciPy libraries. We then define a function that can integrate the differential equations 
numerically and then plot the solutions. The function takes in the following arguments: N=10, 
max_time​= 4.0, σ = 10.0, ρ = 28.0, β = 8/3 where N are the number of datapoints which we 
computer over ​max_time ​time steps. Plotting the results, we obtain the following figure, known 
as the Lorenz Attractor, which is a set of numerical values toward which a system tends to 
evolve, for a wide variety of starting conditions of the system. 

 
Figure 1 shows the Lorenz Attractor where σ = 10.0, ρ = 28.0, β = 8/3 and N = 10 computations done over 4 time 
steps. 
 
Using the function, we also generate a time series over an interval [0:1000] and, integrating the 
differential equations once more, plot the output for 3 random starting points: 



 
Figure 2 - Plot of output from solving 3 random starting points over a time interval [0:1000] 
 
3 Building the Neural Network Models in Keras 
 
Keras is a high level user-friendly Python library built on top of other powerful libraries such as 
Theano and TensorFlow. We fit two models, the LSTM network and the traditional RNN, to 
predict one-step ahead the state of the Lorenz System, utilizing the data generated by solving the 
system as above.  
 
3.1 Convert Data into format for Keras 
The data generated is then converted into a format that is usable by the neural network models. 
We split the data into two sets, the training set consisting of 70% of the data and the testing set 
consisting the remaining 30%.  

Lorenz_train.shape:  (7, 1000, 3) 

Lorenz_test.shape :  (3, 1000, 3)  

 
The training dataset contains 7 sequences, each with 1000 data points that have 3 inputs (for x, y, 
and z). Likewise, the testing dataset has 3 sequences with the same format as the training dataset. 
However, the training and testing input for the neural network models needs to be in the form of: 
[​samples, time steps, features​]. We prepare both the training and testing data and reshape it into 
the expected structure: 

Shape of training input:  (7912, 10, 3) 

Shape of training output:  (7912, 3) 

Shape of test input:  (3956, 10, 3) 

Shape of testing output:  (3956, 3) 

 
For both training and testing inputs, we use a sequence of size 10, 7912 and 3956 time 
steps/observations for the training and testing respectively, each with 3-dimensional format (x, y, 
z).  



3.2 The Traditional Recurrent Neural Network (RNN) 
RNNs are a type of neural network that utilize loops to persist information throughout the 
network, while processing sequential data one element at a time. They are trainable by 
specialized weight adaptation algorithms such as ​Backpropagation Through Time​ algorithm that 
implements a gradient descent based learning method [8]. However, the problem with most RNN 
models is that as the number of time steps increases, the backpropagation gradients either start 
vanishing or accumulating and exploding, affecting how the network learns the relationships 
between initial and later states of the system over a significant period of time [8, 9].  
 
Our network architecture is as follows: 

RNNmodel = Sequential() 

RNNmodel.add(SimpleRNN(​16​, input_shape=(​None​, ​3​))) 
RNNmodel.add(Dense(​3​)) 
RNNmodel.compile(loss=​'mean_squared_error'​, optimizer=​'adam'​) 

Training the model: 
RNNmodel.fit(x_train,y_train,validation_data=(x_test,y_test),verbose=​2​,
epochs=​50​) 

Feeding the training and testing data into the model: 

 
Figure 3: RNN Model predicting (x, y, z) 
 
3.3 LSTM Neural Networks 
One of the best ways to overcome the vanishing and/or exploding gradient problem is to use 
LSTM neural networks. These are a special kind of RNN, capable of learning long-term 
dependencies by remembering information for long periods of time. LSTM networks utilize a 
gated cell to preserve the error that can be backpropagated through time and layers, thus allowing 
the network to continue learning over many time steps [10, 11]. They are able to process and 



predict time series sequences without forgetting information about previous states of the system. 
They are very effective in learning long-term dependencies, which regular RNNs fail to learn 
efficiently as the system grows [12]. 
 
The architecture employed for the LSTM is as follows: 

model = Sequential() 

model.add(LSTM(​16​, input_shape=(​None​, ​3​))) 
model.add(Dense(​3​)) 
model.compile(loss=​'mean_squared_error'​, optimizer=​'adam'​) 

Training the model: 
model.fit(x_train,y_train,validation_data=(x_test,y_test),verbose=​2​,epo
chs=​50​) 

Feeding the training and testing data into the model: 

 
Figure 4: LSTM Model predicting (x, y, z) 
 

4 Results 
 
Both the traditional RNN and the LSTM were applied to chaotic data generated from the Lorenz 
System. Results for the network training and evaluation of the network’s predictive capabilities 
on the data are described below. 
 
Training both networks on 7912 samples and validating on 3956 samples: 
 
 
 



Model Epochs Validation Loss 

RNN 50 0.2149 

LSTM 50 0.1523 

RNN 75 0.0559 

LSTM 75 0.0202 

Table 1: Performance comparison for different epochs on testing prediction of the two models 
 

 
Figure 5 shows the Lorenz chaotic time series that were used in the present application for training and testing of a 
traditional RNN. 



 
Figure 6 shows the Lorenz chaotic time series that were used in the present application for training and testing of a 
LSTM network. 
 

   

Figure 7: Comparison of the two models on test data prediction.  



The two models do a relatively good job in predicting the outcome of the Lorenz System over 
time. The results showed that on average, LSTM performs better predictions than traditional 
RNN in systems with chaotic input. 
 
4.1 Testing with single starting point: predicting 1-step ahead 
 
To further learn the efficiency of LSTM in predicting, we also analyzed and compared the two 
models ability to predict one-step ahead, based on a single starting point. 

Shape of data:  (1, 1000, 3) 

Shape of windowed data:  (1978, 10, 3) 

 
Figure 8: One-step prediction performance on test data. Graph of true test output against predicted output for both 
LSTM and RNN. 
 
The performance of one-step ahead prediction is shown in the following table. 

 RNN LSTM 

Average Prediction Error 0.1691547258621755 0.09410667635011637 
Table 2: Performance Comparison for One-step Ahead Prediction 
 
RNN 



 
Figure 9: Graph showing RNN true test output against predicted output based on a single starting point. 
 
LSTM  



 
Figure 10: Graph showing LSTM true test output against predicted output based on a single starting point. 
 
5 Conclusion 
 
In this paper, a traditional RNN and a LSTM network are used in the context of modeling a 
chaotic system and predicting its state, one-step ahead. It is observed that the LSTM network 
outperforms the traditional RNN due to its ability to learn long term dependencies as the system 
behaves grows. Learning about the chaotic systems can give useful insights in weather 
forecasting, traffic, and stock market predictions. As for future work, it would be interesting to 
explore other types of NNs and investigate their effectiveness in predicting chaotic systems in 
comparison to the traditional RNN and the LSTM. Another area of exploration would be 



implementing RNN and LSTM models for multi-step time series forecasting and comparing the 
results as was done for the single-step prediction in this paper. 
 
6 Acknowledgements 
Special thanks to Dr. Thomas Gibbons for his support and guidance throughout the course of this 
independent study project. Many thanks to Dr. Luther Qson for the resources and textbooks on 
Chaos and Dynamic Systems and to the teams behind Keras and Jupyter Notebooks for making it 
easy for us to implement and run our model. 
 
References 

1. Lorenz, Edward N. "Deterministic Nonperiodic Flow". ​Journal of the Atmospheric 
Sciences,​ vol.20, 130-141, 1963. 

2. Banks, J., Brooks, J., Cairns, G., Davis, G., and Stacy, P. (1992), "On Devaney's 
definition of chaos," Amer. Math. Monthly 99; 332-334 

3. Devaney, R. L. (1989), An Introduction to Chaotic Dynamical Systems, (AddisonWesley, 
Redwood City) 

4. Woolley, Jonathan W., Agarwal, P. K., and Baker, John. Modeling and prediction of 
chaotic systems with artificial neural networks. ​International Journal for Numerical 
Methods in Fluids.​ 63:989–1004, 2010. 

5. Sanjay Vasant Dudul. Prediction of a Lorenz chaotic attractor using two-layer perceptron 
neural network. ​Applied Soft Computing 5 (2005) 333–355​. 

6. Daniel Hsu. (2017). Time Series Forecasting Based on Augmented Long Short-Term 
Memory. Retrieved from ​https://arxiv.org/pdf/1707.00666.pdf  

7. Project Jupyter (2017). ​Exploring the Lorenz System of Differential Equations.​ Retrieved 
from 
http://ipywidgets.readthedocs.io/en/latest/examples/Lorenz%20Differential%20Equations
.html 

8. Lipton, Z.C., Berkowitz, J., Elkan, C.: A Critical Review of Recurrent Neural Networks 
for Sequence Learning. arXiv preprint arXiv:1506.00019 (2015) 
https://arxiv.org/pdf/1506.00019.pdf  

9. Hochreiter, S.: The Vanishing Gradient Problem During Learning Recurrent Neural Nets 
and Problem Solutions. ​International Journal of Uncertainty, Fuzziness and 
Knowledge-Based Systems​ 6(02) (1998) 107–116 

10. Andy Thomas. 2017. Recurrent neural networks and LSTM tutorial in Python and 
TensorFlow. Retrieved from 
http://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/  

11. Christopher Olah. 2015. Understanding LSTM Networks. Retrieved from 
http://colah.github.io/posts/2015-08-Understanding-LSTMs/  

https://arxiv.org/pdf/1707.00666.pdf
http://ipywidgets.readthedocs.io/en/latest/examples/Lorenz%20Differential%20Equations.html
http://ipywidgets.readthedocs.io/en/latest/examples/Lorenz%20Differential%20Equations.html
https://arxiv.org/pdf/1506.00019.pdf
http://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/


12. Zaytar, M.A. Amrani, C.E. Sequence to Sequence Weather Forecasting with Long 
Short-Term Memory Recurrent Neural Networks. ​International Journal of Computer 
Applications (0975 - 8887). Volume 143 - No.11, June 2016​. Retrieved from 
https://pdfs.semanticscholar.org/f9ae/308836dc0f96325671be6d75c38a97f42a8b.pdf 

https://pdfs.semanticscholar.org/f9ae/308836dc0f96325671be6d75c38a97f42a8b.pdf

