

Determining Optimum Drop-out Rate for

Neural Networks

Alexander Pauls

Josiah A Yoder

Department of Electrical Engineering and Computer Science

Milwaukee School of Engineering

1025 North Broadway

Milwaukee WI 53202-3109

paulsaj@msoe.edu

Abstract

Dropout is used to reduce overfitting in neural networks. Past research determines the

optimum dropout rate for a dataset but does not compare optimal dropout rates across

datasets. The purpose of this project is to investigate a correlation in optimum dropout rates

between datasets that are non-spatial, non-time series, and have heterogeneous inputs. One

dataset with these properties is credit card default data, which contains each client’s age,

education, etc., and whether they defaulted on their credit card. A dropout rate of 0.5 is

widely used but does not always optimize performance. For each dataset, deep neural

network models were trained over various dropout rates and training-set sizes. The

experimental results presented here show that the optimum dropout rate falls anywhere

within its possible range from 0 to 1, that even 10% dropout can significantly improve

performance over no dropout, and that dropout can be effective even on small datasets.

1

Introduction

Data is more available than ever before. However, basic data analysis does not often result

in accurate predictive models. To model the complex patterns within many of today’s

datasets, scientists often apply neural networks and other machine learning algorithms to

detect complex nonlinear relationships in a dataset. One drawback to expressive networks

is overfitting. Deep neural networks are very expressive, but that expressiveness allows

them to overfit the training data, learning subtle distinctions that are merely artifacts of

some particular training set. Figure 1a shows an example of overfitting. The samples

deviate from the true function, or signal, because of noise, an effect that is common in real

world applications. The overfitting model shown by the contour lines fits so well to the

data that is also captures the noise. Such a model would perform extremely well during

training but would perform poorly during testing or live implementation. A more versatile

and useful model is shown in Figure 1b.

(a) (b)

Figure 1: An example of an overfitted model. (a) A neural network trained with 100

nodes on the PAY0 and PAY2 fields of the credit card default data set. (b) A neural

network trained with 3 nodes. The contour lines show decision surfaces at different

thresholds of the network.

One technique to reduce overfitting is dropout. The dropout technique avoids overfitting

by dropping out different random nodes during training (Figure 2).

2

(a) (b)

Figure 2: The application of dropout to a neural network (a) A network without dropout

(b) One iteration of training the network with a dropout of 50% on the hidden layers.

The contribution(s) of this work are:

 The effect of varying the dropout rates on datasets that are non-time series, non-

spatial, and consist of heterogeneous inputs is studied for three datasets.

 There is not an optimum dropout rate shared by the datasets with similar properties.

The experiments show that the optimal dropout rate can be anywhere within its

range from 0 to 1, influenced by both the dataset selected and how many training

samples are used from the dataset.

 While previous publications show that high dropout rates hurt performance of

models trained on small datasets (Srivastava 2014), the experiments presented here

show that dropout can improve performance even with a training set as small as

450 samples.

Background

Artificial neural networks (ANN) are one type of machine learning model. Similar to the

human brain, ANNs contain a network of nodes, or neurons, that are interconnected. A

deep neural network (DNN) is simply an ANN with multiple hidden “layers”.

A common obstacle with the application of neural networks is overfitting. Overfitting

occurs when the network aligns too closely to the training data set. This leads to the

network having a high predictive power with the training data set but a much lower success

rate with the test data set or live data.

3

Dropout

Dropout is a technique for addressing this problem. The technique involves randomly

dropping, or eliminating, neurons from the network during training (Srivastava

2014). This prevents units from co-adapting too much.

For each backpropagation, a new set of nodes is dropped out. At testing time, no dropout

is applied. Because each backpropagation drops out so many nodes during training, the

expressiveness of the model must be sustained by increasing nodes, layers, epochs, etc.

Following Baldi et. al (2013), this paper denotes the fraction of nodes dropped out during

a backpropagation as q (this is the dropout rate), and the number of nodes remaining as p

(this is the retention rate). This terminology helps to avoid confusion between the dropout

rate and the parameter p, which both appear widely in the literature, but mean different

things.

While dropout is most often applied to the hidden layers of a neural network, it can also be

applied to the model’s input nodes. This can reduce overfitting because the input layers

can become redundant. With dropout, the model learns to consider redundant input nodes

instead of relying on one. Dropout also increases the number of iterations required for the

model to converge during training. For each epoch, a new random set of nodes is

“dropped”. Thus the model is consistently being trained with a lower number of nodes,

requiring more iterations to converge. For example, using a dropout rate of q=0.5 roughly

doubles the amount of iterations required to converge (Krizhevsky 2012). The model would

train half the number of nodes for roughly twice the number of iterations. The additional

computing time would come from the overhead computation time for each iteration. Thus,

using a dropout rate of 0.5 increases computing time but by less than a factor of two. Along

with adjusting the number of iterations during training, the weights must be adjusted during

testing. For example, using a dropout rate of 0.5 during training requires the weights to be

multiplied by 0.5 during testing.

The value of q=0.5 is often used for dropout. AlexNet, the network which achieved a step

up in performance on the ImageNet classification challenge, used a dropout rate of 0.5

(Krizhevsky 2012). In a thorough review of dropout on very large problems, Srivastava

commented that a dropout rate of 0.5 seemed to be close to optimal (Srivastava 2014).

However, a similar image classification system using a deep neural network trained in

MATLAB did not agree with the optimum dropout rate of 0.5 (Boddy 2017). For linear

networks, a dropout rate of 0.5 provides the highest level of regularization (Baldi 2013).

Most neural networks, however, are not applied to linear relationships. A contribution of

this study is to demonstrate that the optimum dropout for a problem varies widely from one

dataset to another and when a dataset’s size is artificially reduced during training. Indeed,

the optimum dropout could fall anywhere within the valid range for the parameter (0 to just

short of 1).

4

ReLU: Rectified linear activation function

The rectified linear (ReLU) activation function is the most popular activation function for

deep neural networks. It has an output range from 0 to infinity. It is 0 for x < 0 and is x for

x > 0 (linear output). It reduces computation time over the softplus and sigmoid functions.

(Krizhevsky 2012)

Producing a probability prediction with a Neural Network: The Softmax

Function

The softmax function is used as the final layer of a neural network to produce a probability

outcome instead of a classification. It essentially normalizes the sum of the values of the

output layer. In the case of predicting the likelihood of credit card default, the softmax

function would produce two values (default and non default probabilities) that add up to 1.

The softmax function can be used in training through back propagation. (Krizhevsky 2012)

Experiments

Python was used to develop the deep neural network models. Specifically, the Python

library TensorFlow was used to facilitate the model training and testing. Other libraries

used include the Pandas and MatPlotLib.

The TensorFlow method DNNLinearCombinedClassifier and DNNLinearCombined-

Regressor are used to train the models. Two hidden layers are used with the first consisting

of 100 nodes and the second consisting of 50. Ten epochs are used for training the model.

Furthermore, a variable representing the dropout rate is passed as an argument into the

TensorFlow method used.

TensorFlow Accuracy Determination and Decision Threshold

The model accuracy is an output of the “evaluate” method within TensorFlow. It is

calculated by first feeding the testing set through the trained model. The accuracy is then

the number of correctly predicted classifications divided by the number of predictions

made, or the size of the testing set.

5

The DNNLinearCombinedClassifier method within TensorFlow is rumored to use a default

threshold of 0.5 when training the DNN. This can be changed by using the predict_proba

method within DNNLinearCombinedClassifier to return a predicted probability for a given

feature set, or sample. The return predicted probability can then be compared to a threshold

and converted to the original binary classification.

Datasets used in our experiments: The Credit Card Default, Breast

Cancer, and Bank Marketing Datasets

Due to their prominence, datasets that are non-time series, non-spatial, and have

heterogeneous inputs are commonly used to create predictive models. The Taiwanese

credit card default dataset (Yeh & Lien 2009) used in this study contains client attributes

such as education level, marriage status, and past payments for approximately 30,000

clients. In addition, it includes whether or not each client defaulted on the credit card, which

is necessary to train the model.

The breast cancer dataset (Wolberg & Mangasarian 1990) includes cancerous cell size

uniformity, other diagnosis metrics, as well as the definitive diagnosis of whether a

cancerous clump exists. This dataset consists of 699 samples.

The bank marketing dataset (Moro, Cortez, & Rita 2014) includes each clients financial

background, marital status, amount of exposure of marketing campaigns, etc. and whether

or not they subscribed to a term deposit. Models trained on this dataset contained a training

size of 28,000 samples and a testing size of 15,000 samples.

Visually evaluating the separability of the credit card default dataset

A separable dataset is one which can be classified perfectly — a surface exists in the feature

space which divides the categories perfectly.

To evaluate the separability of the credit card default dataset visually, a neural network was

trained on just three of the input variables: age, pay0, and pay2 (The dataset does not

include a pay1 field). The attributes pay0 and pay2 each represent the payment status of a

month before the possible default. Negative values represent payment that was on time,

and positive values represent the number of months a payment was late. Figure 3 shows

the trained network’s decision surfaces with various thresholds. The credit card data is far

from separable when only these inputs are considered. There are many points with exactly

the same inputs but both default and non-default outputs. Pay0 is a much stronger indicator

of default than pay3 or age; the vertical decision lines show that changing the second

variable does not change the prediction significantly.

6

 (a) (b)

Figure 3: The credit-card dataset is not separable when considering age, pay0, and pay1.

A three-hidden node network trained on two inputs from the credit card dataset. Red X’s

indicate clients who defaulted and black dots those who did not. The red values are

slightly offset to avoid overlap. The decision surface is shown in blue. The side to the

right of decision surface represents clients predicted to default (the side with higher pay0

values). Two experiments are shown with different inputs: (a) pay0 vs pay2 and

(b) age vs pay0

Evaluating the optimum dropout rate of different datasets

Figure 4(a) shows the accuracy of a model trained on the credit card default dataset that

contains 18,500 samples. Figure 4(b) corresponds to a model trained on a breast cancer

dataset that contains 450 samples. Both models were trained using two hidden layers

consisting 100 nodes and 50 nodes. As can be seen, an increased dropout rate improved

the model accuracy with a large dataset but decreased the accuracy with a considerably

smaller dataset.

7

 (a) (b)

Figure 4: Impact of dropout rate on a large and a small dataset (a) The credit card dataset

containing 18,500 samples in the training set (b) The cancer dataset containing 450

samples in the training set.

To attempt to replicate the small training size effect seen in Figure 4(b) on the credit card

default dataset, models were trained using 450 credit card clients across different dropout

rates. Figure 5(a) shows the model accuracies that were determined with the previously

used testing set of 1000 samples. As can be seen, the accuracy increases to an approximate

maximum when any amount of dropout is present. In an attempt to keep parameters

consistent between datasets, the 450 credit card training set was also paired with a testing

set of 230 samples, which is the testing set size used in the breast cancer dataset. Five trials

of this configuration were run across the dropout rates, and the averaged resulting model

accuracies are shown in Figure 5 (b).

 (a) (b)

Figure 5: Impact of dropout rate on a credit card training set of 450 samples while using

large and small testing sets (a) The credit card dataset containing 1000 samples in the

testing set (b) The credit card dataset containing 230 samples in the testing set

Much of the variation shown in Figure 5(b) is not repeatable from one set of trials to

another. Figure 5(b) averages the results of five different trials. Figure 6 shows the first

four trials that were used to construct the averaged curve in Figure 5(b). Figure 6 shows

that the model accuracy is inconsistent between trials. This negates the confidence of

possible conclusions drawn from Figure 5(b). The credit card default dataset likely has too

8

many variables and complexity for a 230 sample testing set to consistently gauge the model

accuracies. Furthermore, the occurrence of default is relatively uncommon. Therefore, the

randomly picked 230 sample testing set can range significantly in its proportion of

defaulting clients.

Figure 6: Different trials for the averaged data seen in Figure 5(b).

Figure 7 shows that the model performance for the bank dataset is not significantly affected

by the dropout rate. It is difficult to determine an optimum dropout rate with a high

confidence due to the small change in performance, which is less than 0.5%. If models

trained on such datasets are not affected by the dropout rate, then no optimum dropout rate

can be determined. Thus, it is not possible for such datasets to share an optimum dropout

rate.

Figure 7: Performance of model trained on a 28,000 sample bank marketing dataset

9

Related Work

Although the specific form of dropout that we experimentally study here appeared in the

literature only recently, the idea of dropping out nodes or edges has been in the literature

for some time. For example, In the 1990’s genetic algorithms were used to learn which

nodes belonged in a neural network (Ronald and Schoenauer, 1994).

Dropout is considered as a sort of bootstrap aggregation or bagging technique (Breiman

1996) in which multiple models are trained on subsets of the data and then combined.

Unlike the most straight-forward bagging implementation, all of the models share weights

even though they have different structures at each step of training due to dropout

(Krizhevsky 2012).

This work has emphasized the relationship between overfitting and neural network

expressivity. Curiously, neural networks have a built-in ability to avoid overfitting even

when they are capable of memorizing the input set (Zhang et al. 2016). It is not clear how

this finding relates to the current work.

Conclusions

The optimum dropout rates for the credit card default, breast cancer, and bank

marketing datasets were not consistently similar. Furthermore, the dataset size seemed to

have a large effect on the optimum dropout rate, with smaller datasets performing better

with low dropout rates. Due to the variance in optimum dropout rates for the studied

models, the implementation of a universal dropout rate is not recommended. It is likely

there are too many varying factors between different datasets that prohibit a common

optimum dropout rate. Therefore, it is recommended that for each application of the deep

neural network studied, the dropout rate be optimized before live implementation of the

model.

Future Work

We plan to expand our experiments to include a larger variety of datasets. We plan to

further explore the parameters that could influence the optimum dropout rate, including

dataset size, number of features, number of hidden nodes, and separability.

We would like to consider the number of hidden nodes in addition to dropout rate and

dataset size. This is important because the dropout rate affects the number of hidden nodes

used during training. We would expect that increasing the number of hidden nodes would

have a similar effect to reducing the dropout rate, except when the dropout rate gets close

10

to zero. Varying the number of hidden nodes also allows us to control the expressiveness

of the neural network and provides an alternative way to avoid overfitting.

Another parameter we could explore is the number of hidden layers used during training.

This parameter was not varied in this study because the network cannot be trained with

more than approximately three hidden layers without becoming too expressive.

Bibliography

Baldi, Pierre, and Peter J. Sadowski. "Understanding dropout." Advances in Neural

Information Processing Systems. 2013.

Bianchini, Monica, and Franco Scarselli. "On the complexity of neural network classifiers:

A comparison between shallow and deep architectures." IEEE transactions on neural

networks and learning systems 25.8 (2014): 1553-1565.

Breiman, Leo. "Bagging predictors." Machine learning 24.2 (1996): 123-140.

Boddy, Nicholas. Object Classification using Deep Convolutional Neural

Networks. Midwest Instructional Computing Symposium (MICS) 2017

Breiman, Leo (1996). "Bagging predictors". Machine Learning. 24 (2): 123–140.

doi:10.1007/BF00058655.

Hersbach, Hans. "Decomposition of the continuous ranked probability score for ensemble

prediction systems." Weather and Forecasting 15.5 (2000): 559-570.

http://journals.ametsoc.org. 2000.

Hinton, G.E., Krizhevsky, A., Srivastava, N., Sutskever, I., & Salakhutdinov, R. (2014).

“Dropout: a simple way to prevent neural networks from overfitting.” Journal of

Machine Learning Research, 15, 1929-1958.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with

deep convolutional neural networks." Advances in Neural Information Processing Systems.

2012.

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].

Irvine, CA: University of California, School of Information and Computer Science.

Mangasarian, O. L. and W. H. Wolberg: "Cancer diagnosis via linear programming",

SIAM News, 23.5, (1990): 1-18.

https://doi.org/10.1007%2FBF00058655
http://journals.ametsoc.org/doi/pdf/10.1175/1520-0434%282000%29015

11

Ronald, Edmund, and Marc Schoenauer. "Genetic Lander: An experiment in accurate

neuro-genetic control." International Conference on Parallel Problem Solving from

Nature. Springer, Berlin, Heidelberg, (1994).

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from

overfitting." Journal of machine learning research 15.1 (2014): 1929-1958.

Yeh, I-Cheng, and Che-hui Lien. "The comparisons of data mining techniques for the

predictive accuracy of probability of default of credit card clients." Expert Systems with

Applications 36.2 (2009): 2473-2480.

Zhang, Chiyuan, et al. "Understanding deep learning requires rethinking generalization."

arXiv preprint arXiv:1611.03530(2016).

