
Mobile SuDoKu Harvesting App

Benjamin Zwiener

Department of Computer Science

Doane University

1014 Boswell Ave, Crete, NE, 68333

benjamin.zwiener@doane.edu

Abstract

The purpose of this project was to create an Android application that uses computer

vision to harvest the layout and published difficulty of unsolved SuDoKu puzzles, and

then upload this data to a database. The harvested data will be used to train a neural

network, designed by another student, with the purpose of automatically classifying the

difficulty of Sudoku puzzles.

Sudoku is a logic game with very simple rules. You have a 9x9 grid where the goal is to

put a digit from 1-9 in each row, column, and sub-3x3 grid. Even though the rules are

very simple, the game can be quite complex to solve. There are many techniques to

solving a Sudoku puzzle so determining a difficulty can be very challenging.

Keywords: Computer vision, Sudoku, mobile app

1

1 Introduction

1.1 Background history

Sudoku is a widely played game across many age groups. Sudoku is highly touted for its

easy to understand rules but hard to solve puzzles. Sudoku is credited to Howard Garnes

who worked for the American Dell Magazine. He introduced the puzzle in 1979 as a

modified version of Leonhard Euler’s Latin Squares and the historic Magic Squares. It was

first called Number Place. The game became very popular in Japan where it was renamed

to Sudoku (Japanese) or Number Single (English). Su translates to number and Doku

translates to Single.

The creation of Sudoku has created many intriguing mathematical and computer science

problems to be solved. Most, if not all, Sudoku puzzles are now generated by computers.

This in itself is a fun problem to solve as a game must have only one solution. Another

mathematical problem involving Sudoku is how many possible puzzles are there. In a 2005

paper by Bertram Felgenhauer called “Enumerating possible Sudoku grids,” there is an

estimated 5,472,730,538 unique Sudoku puzzles. This was solved with a computer

program and later verified. The last problem I will bring up involving Sudoku puzzles is

that of classifying its difficulty.

1.2 Origins of project

Doane’s Computer Science Department has an ongoing SuDoKu project. The project

already has a puzzle generator that submits puzzles to the University’s Doane Owl. Another

student is now training a neural network to determine the difficulty of a Sudoku puzzle. To

test the neural network, some other application that would read in Sudoku puzzles to turn

them into an 81 character string – representing the puzzle – while also recording the

published difficulty was needed.

This jumped out as a computer vision problem. It came about at the right time as Doane

University has a three-year Digital Imaging and Vision Applications in Science (DIVAS)

program to teach computer vision techniques to undergraduate students. DIVAS introduces

natural science undergraduate students to Python programming and computer vision

techniques. In May 2017, the DIVAS scholars participated in a five-day programming boot

camp, where we learned the fundamentals of bash, git, Python, and the OpenCV computer

vision libraries. After the boot camp, we worked on genuine research projects, both in pairs

and individually. The SuDoKu harvester was part of our individual projects.

2

2 Initial Plans

The first rough draft of the project envisioned a mobile Android application where the user

would snap a picture of a Sudoku puzzle, let a computer vision algorithm using OpenCV

determine the character – if any – in each square, verify the algorithm did the correct

identification, and then classify the puzzles published difficulty. All of this information

would then be sent to a database to be tested.

This would require the creator to learn enough Android application development to access

the smart phones camera capabilities and then send the taken images to a Java language

OpenCV algorithm as Android uses the Java programming language. Understanding the

differences between OpenCV’s Java and Python libraries was also needed as the DIVAS

boot camp only taught the Python library. Finally, being able to understand how to send

the data to a hosted database was needed.

3 Setbacks

Right away there were setbacks with the project. The developing environment for Android

is enormous with several APIs and versions. After choosing an initial API, we came along

the problem that the online tutorials only work for specific versions of Android and there

are little to no comments in their code. This brought about a long continuing setback as the

learning curve is steep. Because of this, most of the time has been spent creating a Python

prototype to process the puzzles. The algorithm for this can then be transferred over to

Java.

Figure 1. Sudoku puzzle used for

testing.

3

3.1 Attempt one

Another setback is figuring out a way to classify the digits on the grid. The first algorithm

we attempted to implement was using basic OpenCV functions. Some of the basic

functions were turning a colored RGB image to its grayscale equivalent, blurring an image

using the Gaussian blur technique, using a threshold function to create a binary image, and

finally a find contours function. Contours of an image are the boundaries to objects. The

boundaries are found from a binary image through quick changes from black to white. The

first steps were used on images of digits 1-9. Grayscale, blur, and make the image binary

 Find the contours on the image

 Store each contour in a list

These contours will later be used to compare shapes with other contours.

The next steps were done on an image of a Sudoku puzzle.

 Grayscale, blur, and make the image binary

 Find the contours on the image

 Loop through the list of contours and use a function called matchShapes() to

determine if the contour is a digit or not

What is done can be seen in Figures 2, 3 and 4. There were several problems. First was too

many contours were found so it took a long time to go through all the contours. The

attempted solution for this was finding a threshold number for the contour area. OpenCV

has a function that determines the area called contourArea(). This was also a pain because

it never found all the digits correctly. We tried for several days get this to work, but with

no real success. We ended up deciding that even if we could solve it for this puzzle, there

would be many problems with other versions of Sudoku that used different fonts. This

brought us to our second attempt.

Figure 2. Image used Figure 3. Image used Figure 4. All contours

for digit one. for digit 2. found.

4

3.2 Attempt two (houghlines)

For the second attempt at solving the classification problem we decided to attempt to cut

up the grid first to separate all the squares. At this point we had decided we would try to

classify the digits using some type of neural net – which will be talked about in Section 4

Current Work. After looking for solutions on the internet, we found what looked like an

easy process that implemented OpenCV. The found solution, using hough lines, can be

seen in Figure 5.

The solution found on the internet looked simple and straightforward, but did not work out

the way it should have. After hours of making small changes, Figure 6 shows the best

attempt at finding the hough lines. We assume the problem had to do with either the bold

outline of the puzzle or something on the background. In current work, we are still toying

with this method to try to get it to work while trying out a different method.

4 Current Work

Our Professor Mark Meysenburg at Doane University is trying to put together a camera

application tutorial to help us learn the specifics needed for Android. While he is doing

that, we are just trying to put together an algorithm to separate each square from the grid.

The reason we are only focusing on separating the grid is because we found an easy way

to classify the digits.

We were able to train a neural net how to classify digits using deep learning techniques.

This was done at the SIGCSE conference in Baltimore at the end of February. The neural

net was trained using data from the late 90’s that was gathered to classify written zip codes

for mailing purposes. We were able to download the trained neural net as a Caffe model

Figure 5. Solution found at Figure 6. Our best attempt at

http://jponttuset.cat/solving-sudokus-like-a-pro-1/. finding the hough lines.

5

and have just started using it we some cropped out images with good results. This will be

wrapped into the Android app once finished to classify our digits.

5 Conclusion

Overall, this project has been much more difficult that initially anticipated. The learning

curve Android was not expected. Along with that, the problems in classifying digits with

the small toolset learned at the DIVAS boot camp was helpful, but needed to be expanded.

OpenCV was the only solution, but had little documentation so extra time was needed to

understand new functions. The neural network was a great relief in making progress

towards the final version of the project. We plan to have a prototype application completed

shortly with continued work to be done for months to come.

References

[1] Delahaye, Jean-Paul. “The Science Behidn Sudoku.” 2006,

www.cs.utexas.edu/~kuipers/readings/Sudoku-sciam-06.pdf.

[2] Felgenhauer, Bertram, and Frazer Jarvis. “Enumerating Possible Sudoku Grids.”

www.afjarvis.staff.shef.ac.uk/sudoku/sudoku.

[3] Meysenburg, Mark. “Image Processing.” Image Processing,

mmeysenburg.github.io/image-processing/.

[4] “OpenCV Library.” OpenCV Library, docs.opencv.org/.

[5] “ Origin of Sudoku.” The Origin of the Sudoku Puzzle, Sudoku Dragon, 2005,

www.sudokudragon.com/sudokuhistory.htm.

