
Implementing Novice Friendly Error Messages in
Clojure

Charlot Shaw
Computer Science Discipline

University of Minnesota Morris
Morris, MN 56267

shawx538@morris.umn.edu

March 17, 2018

Abstract

Clojures promise as an educational language taught to first time programmers is limited
by its error messages, which show its Java underpinnings. The messages are generated by
the Java code executing the Clojure program, and thus are focused on the state of the Java
implementation of Clojure, which hides the details about the issue in the users code. By
using these messages, along with the information obtained via Clojure.Spec contracts, error
messages can be reformatted into a beginner friendly, near plain-language representation.
By integrating the re-formatting code into Clojures nREPL middleware system, the trans-
formation can be accomplished without disturbing programmers’ workflow, and be easily
incorporated into Integrated Development Environments. We present a proof of concept
implementation integrating beginner friendly error messages into Clojure via nREPL.



1 Introduction

Clojure [2], amongst other functional languages, has gained attention in recent years in
part for its management of state and concurrency. Running on the Java Virtual Machine
(JVM), Clojure has a number of advantages for beginning students. Its Lisp style syntax
and elegant core library work together to let beginners learn easily, while its ties to the
JVM keep it relevant as students progress into later courses. However, from an educational
perspective, it has a significant flaw in the form of error messages. As Clojure code runs
in the JVM, its errors take the structure and terminology of Java error messages, and so
are confusing to new students. They can understand the source of the error, but not how
the system presents it to them. For example, a user who accidentally called addition on a
boolean needs to understand the Java object hierarchy, casting, and the classes involved to
fully understand what is meant by “java.lang.classCastException java.lang.Boolean cannot
be cast to java.lang.Number”, whereas the mental overhead required to understand “In
function + the first argument true must be a number, but is a boolean” is significantly
lower, with the latter being closer to a plain language description of the issue. In order to
overcome these problems, we have explored possibilities for integrating customized error
messages with common tools in the Clojure programming community.

2 Error Messages in Clojure

Clojure is hosted and interpreted in the JVM, as a Java program. Clojure code can either
be loaded by a running Clojure process, or compiled Ahead Of Time (AOT compilation)
into Java bytecode. In either case, even simple Clojure code mid-execution is in actuality a
complex Java program. When that program encounters any error, including syntax errors,
it is thrown as a Java exception. From the viewpoint of the JVM, the entirety of the Clo-
jure process is a part of the users program, and so error messages include large amounts
of data about the underlying state of the Java classes that implement Clojure. This surplus
information can be useful in debugging, but whole message is still phrased from a Java per-
spective, requiring familiarity with Java to understand what is happening in Clojure. This
undue onus on the beginner, unfamiliar with programming in general, is an unreasonable
burden. However, the information present can be leveraged by us to make our improved
error messages, though there is not enough information in them to rely on them entirely. A
second source of information is preferred when possible, and can be found within Clojure
itself, in the form of Clojure Spec contracts.

3 Clojure Spec

The second piece of the information required can be sourced from Clojure Spec [3] which
is a recently added library within Clojure, dealing with runtime validation of the structure
of data within a program. These take the form of specifications, or contracts and can be

1



applied to any data structure, including the arguments supplied to a function. For example, a
function dealing with a list can have a Spec contract enforcing that all arguments used as list
indices are non-negative integers. Importantly, these contracts provide detailed information
about how the actual values differ from those required. By providing Spec specifications for
the core library of Clojure, we can cover every function that a novice is able to call, and thus
catch any miscalled functions with detailed Spec error messages. This information can be
captured by our system, and as a result lets us access information such as the actual values
that caused the exception, a detail often omitted by default Clojure errors. Note that Spec
only provides errors for function arguments; for syntax errors or other kinds of runtime
exceptions, we need to source our data from the original Java error messages. Between
Spec error messages and the original Java error messages, we have enough information to
leverage the tools built by the University of Minnesota Morris research group [4]. However,
up until now it was not clear how this system could be integrated with the larger Clojure
ecosystem.

4 Clojure, REPL and the IDE

Clojure is homoiconic, meaning that a Clojure program is also a Clojure data structure.
Evaluating every value in that structure is equivalent to running the program. This allows
a Clojure process to read in data, process it as a program, display the results back to the
programmer, and keep running, awaiting the next input. This common sequence of steps
is referred to as the Read-Eval-Print-Loop (REPL). Programmers use it to interactively test
and build up individual parts of their programs. This pattern of development is referred
to as REPL-Driven and is commonly used in Clojure community. Most Clojure Integrated
Development Environments (IDEs) feature REPLs for user convenience. Outside of de-
veloper experimentation, the REPL mechanism is also used by the Clojure process to load
in new Clojure code for execution in a running program, omitting the Print step if neces-
sary. Spanning both evaluation of code, and the preparation of output back to the user, the
REPL is a prime location for our system to be implemented. However, building our own
custom REPL is not advisable, as it limits the integration possibilities, needing IDEs to be
customized to support it. Instead, the ideal position for our code is within a module for a
popular, expandable REPL implementation.

5 nREPL

nREPL [1] is a community standard implementation of the REPL concept, using a
Client/Server model. It is integrated into Clojure project management software, as well
as most commonly used IDEs that support Clojure. nREPL works by passing messages
from the client, to be executed on the server, with the results being returned to the client
for display. It allows a set of middleware to modify messages, providing utilities like
interruptible evaluations or independent user sessions. Custom middleware, such as ours,

2



can be added by simply modifying a projects configuration file. Once our code is added,
it listens for messages coming back from the server marked to be displayed to the users as
errors. It customizes the error messages, and then reinserts them into the middleware stack
to reach the user. As it is using the same message propagation scheme as an unmodified
nREPL, IDEs should pick up and display the new error messages with little trouble. This
also does not change or affect anything on the server side, so there are no side effects.

6 Conclusion

Between Clojure default error messages, and Clojure Spec we have all the information
needed to modify error messages, using the tools created by prior works of the Univer-
sity of Minnesota Morris research group. Using nREPL middleware lets us place our code
seamlessly into the beginners workflow, in a way that would not violate the expectations
of more advanced users. Taken together our system shows a proof of concept for how Clo-
jure error messages can be modified for beginners via nREPL, a necessary step in making
Clojure an educational language for first time programmers.

7 Acknowledgments

The author thanks the project adviser Elena Machkasova. The work was supported in part
by Morris Academic Partnership (MAP) stipend at UMM.

References

[1] EMERICK, C., AND CONTRIBUTORS. nREPL. https://github.com/
clojure/tools.nrepl. Accessed: 3/16/18.

[2] HICKEY, R. The clojure programming language. In Proceedings of the 2008 sympo-
sium on Dynamic languages (New York, NY, USA, 2008), DLS ’08, ACM, pp. 1:1–1:1.

[3] HICKEY, R. clojure.spec - Rationale and Overview. https://clojure.org/
about/spec, 2016. Accessed: 3/16/18.

[4] SONG, M., AND MACHKASOVA, E. Improving clojure error messages for program-
ming novices with clojure.spec. In Midwest Instruction and Computing Symposium
(2017).

3

https://github.com/clojure/tools.nrepl
https://github.com/clojure/tools.nrepl
https://clojure.org/about/spec
https://clojure.org/about/spec

	Introduction
	Error Messages in Clojure
	Clojure Spec
	Clojure, REPL and the IDE
	nREPL
	Conclusion
	Acknowledgments

