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Abstract 

 
Support Vector Machines is an excellent tool for classification. Since they can transform 

the dataset to higher degrees to produce decision boundaries, they outperform probabilistic 

models and clustering algorithms [1]. However, using classification algorithms on datasets 

without preprocessing is not a good practice [2]. The two most significant drawbacks being 

the presence of cloud cover and the dataset being imbalanced. Cloud cover introduces noise 

in the dataset reducing its overall accuracy [3]. Removal of imbalance in datasets has been 

an issue of importance for machine learning and data mining implementation techniques 

[4]. A dataset is said to be imbalanced if there is a significant difference in the number of 

instances of one attributes when compared to another. A typical example of an imbalanced 

GIS dataset is land-use classification where a study area can be mostly forest with very 

little urban settlement. This introduces bias in the dataset causing the output to be skewed 

towards the attribute having more instances compared to the sparse ones. The overall 

accuracy might be high, but the sensitivity and specificity might suffer for different classes. 

 

To compensate for this problem, we propose a hybrid approach using Support Vector 

Machines that performs Synthetic Minority Over-Sampling Technique (SMOTE) [5] 

evaluation. Support Vector Machines is implemented using three different kernels. This 

study investigates the potential of such a hybrid approach to increase overall accuracy of 

the dataset as compared to the usage of stand-alone classification algorithm.  
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Introduction 

Remote sensing analysis is centered around landcover estimation, classification [2], [3] and 

change detection [4], [5]. They form the foundation of various studies related to mapping 

crop diseases [6] to climate change analysis [7]. The foundation of remote sensing lies in 

supervised classification [8]. Most models work by training subset of selected pixels 

obtained from remotely sensed imagery and using the model to test the results on a testing 

dataset. Once accuracy can be estimated to a desired level, the model is applied on the 

entire dataset to generate a classified map of the study area. On investigating the accuracy 

of individual class labels using sensitivity and specificity values, there is a probability of 

minority classes suffering from low accuracies compared to majority classes. It is not 

uncommon to find a model with high overall accuracy occurring due to high true positives 

for a class label occupying majority of the dataset. So, even if the model is branded as 

accurate, it is not dependable if the study must be conducted on pixel values related to 

minority class labels.  

Another prevalent problem is the presence of cloud cover in time-series GIS datasets [9]. 

Yield variance on crops [10], [11] over a desired time-frame of 5 to 10 years refers to 

collecting multiple raster datasets over the same place within a limited time corresponding 

to the crops’ harvesting season. Very often, some time series data suffers from cloud cover. 

This noise in raster images makes classification a tough job for researchers. Although 

interpolation techniques are used to remove cloud cover, a dataset dwarfed almost entirely 

by cloud is practically useless for analysis.  

Feature selection can be an effective tool to reduce the effect of noise in the datasets [12]. 

Data mining techniques such as random forests that use feature selection have been used 

effectively in remote sensing [13]. However, minority class labels suffer from classification 

more than majority labels even though they might have the same amount of noise in them 

[14]. This is because the majority class labels have sufficient records to identify noise as 

outliers compared to minority class labels. To address this anomaly, SMOTE can be 

applied on the records before classification. SMOTE sampling technique tries to balance 

the dataset by oversampling to the minority class labels to ensure that the class has enough 

training points to reduce the bias of majority class label. Although SMOTE creates new set 

of values, it does so by identifying the density of values clustered in the minority dataset. 

By doing so, SMOTE picks the actual values that contribute to minority class labels and 

outliers that negatively affect the outcome. SMOTE then creates records that are closer to 

actual values increasing the accuracy of the minority class label. 

This study aims to find if SMOTE is an effective tool for landcover classification as well. 

Data corresponding to multiple years have been used that contain cloud cover. SVM 

classification will be applied with and without SMOTE to identify how it affects outcome.  
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Previous work 

SMOTE has been widely used in various fields to reduce the problem of imbalanced 

dataset. An apt area for application of SMOTE is in fraud detection. Fraud detection such 

as credit cards, car insurance etc. deals with a highly unbalanced data that contains more 

legitimate records with very few fraud signatures. A hybrid approach was implemented 

using SMOTE and k reversed nearest neighbors (kRNNs) on an insurance fraud dataset 

[15]. Data mining approaches such as C4.5, Naïve Bayes and k-NN were tested on the 

unbalanced dataset and results were compared with the SMOTE applied dataset. The 

hybrid method was able to increase prediction accuracy for both fraud and legitimate 

labels. The highest increase was recorded for k-NN where accuracy increased from 85% to 

99.9%. The hybrid method used extreme outlier detection in minority class and removed 

them before over-sampling the minority class. This ensured that the dataset produced new 

points around minority data sample showing higher density and ignored outliers.  

In [16] authors quantified the relationship between over and under sampling dataset using 

SMOTE. Classification using SVM was done on three balanced datasets obtained from 

UCI machine learning repository. The classification generated accuracy close to 100%. 

This was followed by under sampling the majority class and recording the hyperplanes and 

oversampling the minority class and recording the hyperplanes. The dot product was 

obtained between the original hyperplane and the under sampled data. Another dot product 

was obtained for the original data with the oversampled one. Results indicate that 

oversampling the minority data is always beneficial to accuracy estimation proving that 

SMOTE is good for oversampling. However, under sampling extensively can reduce the 

accuracy estimation and increase the variance of the hyperplane as the model does not 

contain sufficient training data. Using different error costs based on data labels and 

SMOTE implementation the model generated smoother and more consistent hyperplanes.  

A combination of genetic algorithm(GA) and SMOTE was used for feature selection and 

balancing dataset [12]. Employing the concepts of selection, crossover and mutation a GA 

tries to mimic evolution concepts to select a proper solution using fitness function [17], 

[18]. The GA was used to evaluate the dataset and identify features that were considered 

as more important in defining the dataset. Using the important features generate by the GA, 

SMOTE was applied on the dataset to oversample the minority label. A k=5 was selected 

for SMOTE where k denotes the number of neighbors selected for random sample 

generation. An appropriate over-sampling rate was selected to ensure the randomly 

generated sample data would be spread throughout the decision boundary of the SVM that 

would be applied later for classification. This method avoids dense cluster of data and 

increases prediction accuracy. The method achieved an accuracy of 72% for a lymphoma 

dataset used in the study.  

SMOTE application in various fields have been successful and its application in removing 

noise in GIS datasets can be of great help in various remote sensing applications.  
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Support Vector Machines 

Support Vector Machines is a non-parametric approach to classification. It works by 

creating decision boundaries between one class and the other. The decision boundary or 

the hyperplane that separates one class from the other is determined by points in the dataset 

that are responsible for separating the two class labels [19]. These points are also known 

as support vectors, hence, the term support vector machines. Original SVM algorithms 

apply one-against-one methodology making it an appropriate tool for binary classification. 

Recent versions also perform multi-class classification by doing multiple one-against-one 

iterations over several class labels and aggregating the decision boundaries obtained using 

certain reliability frameworks such as static and dynamic reliability measures [20]. The 

underlying difference in results obtained using SVM lies in the kernels. Three of the most 

frequently used SVM kernels include linear, polynomial and radial. The linear kernel as its 

name suggests works by creating linearly separable hyperplanes between the classes. Two 

hyperplanes exist as shown in equation 1.  

  𝑚. 𝑥𝑖 + 𝑐 ≥  1   ∀ 𝑦 = 1 𝑎𝑛𝑑 𝑚. 𝑥𝑖 + 𝑐 ≤  1   ∀ 𝑦 = −1   Equation 1 

Here m denotes the orientation of the hyperplane and c signifies the distance of the 

hyperplane from the origin. The support vectors lying on the hyperplane can be denoted by 

equation 2.  

     𝑚. 𝑥𝑖 + 𝑐 = ± 1      Equation 2 

Figure 1 shows the linearly separable SVM classification for a two-class problem. Here, 

green lines correspond to the two hyperplanes and the points lying on them signify the 

support vectors.  

Figure 1: Diagrammatic representation of linear kernels in SVM. 
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Linearly separable kernels are good when the dataset is easily separable using a straight-

line hyperplane. However, in some cases with multiple attributes, a single horizontal line 

cannot easily demarcate the difference in class labels. Polynomial kernel is a non-linear 

kernel that works by increasing the degree of attributes to a higher dimension so that a 

better hyperplane can be deduced. Equation 3 shows a polynomial kernel  

    𝑃(𝑥, 𝑦) = (𝑥𝑇 . 𝑦 + 𝑐)𝑚      Equation 3 

Here, m denotes the degree to which the linear solution has been raised to obtain a better 

separation. Once a certain degree yields a satisfactory separation, the model uses the 

corresponding hyperplane for estimation. Polynomial kernels are frequently used in 

Natural Language Processing [21] and can yield significantly good results than linear 

kernels in remote sensing when multiple types of independent attributes are used such as 

different spectral bands in remote sensing [22].  

The radial basis kernel shown in equation 4 is also a commonly used kernel that uses the 

Euclidean distance between values to determine the hyperplanes. Here x and y are two 

samples and −2𝜎2 is the inverse of kernel width. The kernel width and regularization 

parameter that is chosen varies from one study to the other.  

    𝑃(𝑥, 𝑦) = 𝑒𝑥𝑝(
‖𝑥−𝑦‖2

2𝜎2 )𝑚              Equation 4 

 

Study Area 

Landsat 5 multispectral images were used for this study. The data was obtained on 

September 19, 2009 as shown in Figure 2 (left) and August 21, 2010 as shown in Figure 2 

(right). The Landsat WRS_PATH was 29 and WRS_ROW was 28. The dataset resolution 

is 30m and it covered Richland county in North Dakota and Roberts county in South 

Dakota. For Minnesota the counties covered include Otter Tail, Grant, Douglas, Stevens, 

Pope, Big Stone, Swift and parts of Clay, Wadena and Todd. The image consisted of seven 

bands which were used as attributes for classification. Normalized Difference Vegetation 

Index (NDVI) obtained from band 3 and 4 was also used for classification. 
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Figure 2: Raster images used for data points 2009 (left), 2010 (right). 

Accuracy Assessment 

Based on the pixel granularity, five distinct classes were selected for the study, namely 

grass, forest, farm, urban and water. Since a 30m resolution is too coarse for classification 

of other features such as wetlands, they were not included in the study. A total of 1400 

points were used for training the model and a separate set of 1200 data points were used 

for testing. The total of 16 attributes were used for the study with bands 1 to 7 for each of 

the two years long with their NDVI values. Out of the 1400 data points used for training, 

20% of the dataset consisted of cloud cover. This variation was introduced to check if 

SMOTE results are affected by their inclusion. The testing dataset was completely free of 

cloud cover. The accuracy results are shown in table 2 for the three kernels used for the 

study.  

SMOTE was applied to the training dataset to create a balanced dataset. A comparison of 

the number of class labels before and after SMOTE application is shown in table 1. The 

highest-class label, farm was 5.67 times the lowest, urban. After running the model on the 

new training dataset, evaluation was done on the same testing dataset to evaluate any 

increase in accuracy. The results are shown in table 3.  

 

 

 

 

Table 1: Class labels with and without SMOTE 

Label Farm Forest Grass Urban Water 

Before SMOTE 425 300 400 75 200 

After SMOTE 425 425 425 425 425 
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a) Radial without SMOTE 

Prediction 
Reference   

Farm Forest Grass Urban Water Total Specificity 

Farm 360 0 284 16 41 701 0.51 

Forest 0 250 0 0 0 250 1.00 

Grass 36 0 114 4 0 154 0.74 

Urban 4 0 2 30 0 36 0.83 

Water 0 0 0 0 59 59 1.00 

Total 400 250 400 50 100 1200   

Sensitivity 0.90 1.00 0.29 0.60 0.59     

        

Accuracy  67.75  Kappa 0.55    
 
b) Linear without SMOTE  

Prediction 
Reference   

Farm Forest Grass Urban Water Total Specificity 

Farm 298 0 268 12 0 578 0.52 

Forest 0 250 5 0 0 255 0.98 

Grass 88 0 127 1 0 216 0.59 

Urban 14 0 0 37 0 51 0.73 

Water 0 0 0 0 100 100 1.00 

Total 400 250 400 50 100 1200   

Sensitivity 0.75 1.00 0.32 0.74 1.00     

        

Accuracy  67.67  Kappa 0.56    

        

c) Polynomial without SMOTE   

Prediction 
Reference   

Farm Forest Grass Urban Water Total Specificity 

Farm 331 0 323 10 0 664 0.50 

Forest 0 248 0 0 0 248 1.00 

Grass 68 2 75 1 0 146 0.51 

Urban 1 0 2 39 0 42 0.93 

Water 0 0 0 0 100 100 1.00 

Total 400 250 400 50 100 1200   

Sensitivity 0.83 0.99 0.19 0.78 1.00     

        

Accuracy  66.08  Kappa 0.53    
 

Table 2: Results for SVM classification without SMOTE 
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a) Radial with SMOTE   

Prediction 
Reference   

Farm Forest Grass Urban Water Total Specificity 

Farm 389 0 300 26 41 756 0.51 

Forest 0 249 0 0 0 249 1.00 

Grass 10 1 98 4 0 113 0.87 

Urban 1 0 2 20 0 23 0.87 

Water 0 0 0 0 59 59 1.00 

Total 400 250 400 50 100 1200   

Sensitivity 0.97 1.00 0.25 0.40 0.59     

        

Accuracy  67.92  Kappa 0.55    

        

b) Linear with SMOTE  

Prediction 
Reference   

Farm Forest Grass Urban Water Total Specificity 

Farm 297 0 241 12 0 550 0.54 

Forest 0 250 3 0 0 253 0.99 

Grass 70 0 154 0 0 224 0.69 

Urban 33 0 2 38 0 73 0.52 

Water 0 0 0 0 100 100 1.00 

Total 400 250 400 50 100 1200   

Sensitivity 0.74 1.00 0.39 0.76 1.00     

        

Accuracy  69.92  Kappa 0.59    

 

c) Polynomial with SMOTE  

Prediction 
Reference   

Farm Forest Grass Urban Water Total Specificity 

Farm 330 0 309 16 0 655 0.50 

Forest 0 246 0 0 0 246 1.00 

Grass 57 4 90 0 0 151 0.60 

Urban 13 0 1 34 0 48 0.71 

Water 0 0 0 0 100 100 1.00 

Total 400 250 400 50 100 1200   

Sensitivity 0.83 0.98 0.23 0.68 1.00     

        

Accuracy  66.67  Kappa 0.57    
 

Table 3: Results for SVM classification with SMOTE 
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The results obtained from accuracy assessments show slight increase after SMOTE 

application. The highest increase of 2.25% has been recorded for linear kernel, while an 

increase of 0.17% for radial and 0.58% for polynomial has been recorded. The accuracy 

suffers mostly due to misclassification of grass. The SMOTE can deal with the impact of 

cloud cover to some extent, but it cannot distinguish between grass and farm as it has 

similar spectral signatures to some extent. Object based classification can be used to some 

extent to rectify this problem which is beyond the scope of this paper and will be kept as 

future work.   

 

Comparative Analysis 

Since SMOTE could not provide a significant increase in accuracy, one potential cause 

could be the low ratio between highest and lowest class labels. To test this hypothesis, 

another accuracy assessment was conducted on a landcover dataset obtained from UCI 

Machine Learning Repository [23]. The time-series dataset consists of 28 attributes 

corresponding to NDVI values obtained across a period of January 6th, 2014 to July 20th, 

2015. Each attribute has varying degrees of cloud cover in them. The class labels used for 

this dataset were farm, forest, grass, impervious, orchard and water. The training dataset 

consists of 10545 labels and testing dataset has 300 labels. The accuracy assessment before 

SMOTE application is shown in table 5.  

Once these accuracies were obtained, SMOTE analysis was done on the dataset to balance 

it. The difference between the number of records for each class label before and after 

SMOTE is shown in table 4. In this dataset the ratio of the highest-class label forest to the 

lowest class label orchard is 140.21 which is much higher than our previous study. The 

accuracy assessment conducted after SMOTE implementation is shown in table 6.  

 

 

 

 

Table 4: Class labels with and without SMOTE 

Results indicate that the accuracy increases at a greater rate for this dataset. The highest 

increase has been recorded for the polynomial kernel at 4.33%, while linear kernel records 

an increase of 2.33 % and radial kernel increases by 1% showing that the extent of 

imbalance could be a contributing factor to the jump in accuracy.  

 

 

Label Farm Forest Grass Impervious Orchard Water 

Before SMOTE 1441 7431 446 969 53 205 

After SMOTE 7431 7431 7431 7431 7431 7431 
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a) Radial without SMOTE  

Prediction 
Reference     

Farm Forest Grass Impervious Orchard Water Total Specificity 

Farm 39 7 10 1 9 1 67 0.58 

Forest 13 57 13 1 26 20 130 0.44 

Grass 0 13 7 1 3 1 25 0.28 

Impervious 1 1 5 37 0 3 47 0.79 

Orchard 0 0 0 0 9 0 9 1.00 

Water 0 0 1 0 0 21 22 0.95 

Total 53 78 36 40 47 46 300   

Sensitivity 0.74 0.73 0.19 0.93 0.19 0.46     

         

Accuracy  56.67  Kappa 0.46     

         

b) Linear without SMOTE  

Prediction 
Reference     

Farm Forest Grass Impervious Orchard Water Total Specificity 

Farm 33 4 5 0 5 1 48 0.69 

Forest 19 61 15 1 36 4 136 0.45 

Grass 0 12 13 4 1 1 31 0.42 

Impervious 1 1 2 35 0 8 47 0.74 

Orchard 0 0 0 0 5 0 5 1.00 

Water 0 0 1 0 0 32 33 0.97 

Total 53 78 36 40 47 46 300   

Sensitivity 0.62 0.78 0.36 0.88 0.11 0.70     

         

Accuracy  59.67  Kappa 0.5     

         

c) Polynomial without SMOTE   

Prediction 
Reference     

Farm Forest Grass Impervious Orchard Water Total Specificity 

Farm 38 7 6 5 11 1 68 0.56 

Forest 15 57 15 2 23 3 115 0.50 

Grass 0 14 12 0 3 2 31 0.39 

Impervious 0 0 2 33 0 8 43 0.77 

Orchard 0 0 0 0 10 0 0 1.00 

Water 0 0 1 0 0 32 33 0.97 

Total 53 78 36 40 47 46 300   

Sensitivity 0.72 0.73 0.33 0.83 0.21 0.70     

         

Accuracy  60.67  Kappa 0.51     

         
Table 5: Results for SVM classification without SMOTE 
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a) Radial with SMOTE 

Prediction 
Reference     

Farm Forest Grass Impervious Orchard Water Total Specificity 

Farm 42 8 7 4 12 1 74 0.57 

Forest 10 52 8 0 19 25 114 0.46 

Grass 0 16 13 1 0 1 31 0.42 

Impervious 1 1 8 35 0 4 49 0.71 

Orchard 0 0 0 0 16 0 16 1.00 

Water 0 1 0 0 0 15 16 0.94 

Total 53 78 36 40 47 46 300   

Sensitivity 0.79 0.67 0.36 0.88 0.34 0.33     

         

Accuracy  57.67  Kappa 0.48     

 

b) Linear with SMOTE    

Prediction 
Reference     

Farm Forest Grass Impervious Orchard Water Total Specificity 

Farm 35 7 13 0 6 1 62 0.56 

Forest 8 44 5 1 12 1 71 0.62 

Grass 1 21 16 5 0 3 46 0.35 

Impervious 2 1 2 29 0 7 41 0.71 

Orchard 6 3 0 1 28 0 38 0.74 

Water 1 2 0 4 1 34 42 0.81 

Total 53 78 36 40 47 46 300   

Sensitivity 0.66 0.56 0.44 0.73 0.60 0.74     

         

Accuracy  62.00  Kappa 0.54     
         

c) Polynomial with SMOTE 

Prediction 
Reference     

Farm Forest Grass Impervious Orchard Water Total Specificity 

Farm 48 11 8 1 13 3 84 0.57 

Forest 3 43 3 0 12 1 62 0.69 

Grass 0 19 18 0 3 4 44 0.41 

Impervious 1 3 6 38 0 9 57 0.67 

Orchard 1 2 0 0 19 0 22 0.86 

Water 0 0 1 1 0 29 31 0.94 

Total 53 78 36 40 47 46 300   

Sensitivity 0.91 0.55 0.50 0.95 0.40 0.63     

         

Accuracy  65.00   Kappa 0.57    

         
Table 6: Results for SVM classification with SMOTE 
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Conclusions and Future Work.  

A study has been conducted on how SMOTE can affect remote sensing dataset and impact 

accuracy. Two different datasets have been used, one with an imbalance ratio of 140.21 

and the other is 5.67. SVM classification using three kernels namely radial, polynomial 

and linear kernels have been used on the datasets. Results indicate that the accuracy 

increases with SMOTE application. However, the rate of increase is not the same for both 

datasets. Using the three kernels, average increase in accuracy for the dataset with 

imbalance ratio of 5.67 is 1.003%, whereas for dataset with 140.21 imbalance ratio, it is 

2.553%. Since there is no significant increase in accuracy, we can derive that SMOTE 

application is not so efficient in differentiating multispectral attributes. Grass, farms and 

forests which share similar spectral signatures often gets misclassified when using 

multispectral data alone for classification. SMOTE can deal with cloud cover to some 

extent, but there is not sufficient help it can provide to deal with this class boundary 

problem. Further work would be done to establish how SMOTE behaves when object-

based classification is attempted. Object based classification in remote sensing uses 

attributes such as shape, density and elevation data to derive class labels. It is expected to 

produce higher accuracy and complement multispectral analysis. The extent of SMOTE’s 

behavior to such a dataset would be verified.  
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