
Do This and Nothing More:
Teaching Adversarial Thinking Without Security

Jon Beaulieu
Mazin Jindeel

Aleksandar Straumann
Brandon Paulsen

Peter Peterson
University of Minnesota Duluth

Duluth, MN 55812
pahp@d.umn.edu

Abstract

Software Engineering has a computer security problem; programmers often think only of
how to make a program work -- they often don’t think about how it could fail. This
contrast is at the core of the concept of “Adversarial Thinking” -- that security
practitioners (and security conscious developers) need to think critically about about how
a sufficiently motivated and intelligent attacker could make their systems fail.

Unfortunately, students are often only taught the concept of Adversarial Thinking in the
process of teaching them common vulnerabilities and exploits. This is a problem. First,
students who do not take a security course do not learn the value of the adversarial
perspective. Second, students learn Adversarial Thinking in the context of specific flaws
rather than in the context of programming in general. At the same time, exercises that
focus on adversarial aspects of computing often require a significant amount of security
expertise from participants and a large time investment from the facilitators.

One way to naturally teach adversarial thinking is to talk about how program
specifications are not just a list of features that a program should have, but a contract that
states “do this and nothing more.” From that perspective, any program behavior not in the
specification is a flaw. This concept is valuable for many reasons, not the least of which
is that it does not presuppose any particular knowledge of security issues.

We created a framework, DTANM (Do This and Nothing More) that hosts competitions
between teams of students. In these short (1-2 hour) competitions, students are given a
small piece of code and a specification of how it should behave in terms of inputs,

outputs, and displays. For example, our first program was a simple command line
calculator. Students look for flaws in the code that allow it to misbehave. When they find
these flaws (e.g., the calculator allows an attempt to divide by zero), they fix them in their
code and then force other teams’ programs to process those “buggy vectors” by adding
them to a list of tests that all teams’ programs must periodically process. Teams are
scored by comparing their program’s behavior to a “gold standard” program (provided by
the instructor) that is robust to all known attacks. In this way, teams work to improve
their own code, while simultaneously thinking adversarially to discover flaws that enable
unexpected behavior -- All without any special “security knowledge” -- only basic
programming skills.

Students in UMD’s Computer Security course have found this exercise very enjoyable,
and the authors hope to expand its use to students in Intro to CS and Programming
classes. The framework itself relies primarily on basic input / output and scripting. For
each competition, the instructor needs to provide only the source code, a build script, and
the “gold standard” version of the program, which means that the DTANM framework
can support a broad range of different programs, making it flexible and useful for
teaching security principles for years to come.

1

