
Applying Deep Learning to Better Predict
Cryptocurrency Trends

Brandon Ly Divendra Timaul Aleksandr Lukanan Jeron Lau
Erik Steinmetz

Dept. of Mathematics, Statistics, and Computer Science
Augsburg University

2211 Riverside Avenue, Minneapolis, MN 55454
{lyb,timauld,lukanena,lauj,steinmee}@augsburg.edu

Abstract

In this paper, we will create deep learning models using the Python library, Keras, to make
predictions on Bitcoin. We designed two neural networks to make similar predictions with
important differences. In our first approach, we created a simple neural net with one input
layer and an additional dropout layer to generate a continuous value. This continuous value
is the predicted price of the Bitcoin a week from the given input. For the second model, we
attempted to predict whether or not the price of the Bitcoin would go up 3%, stay within 3%,
or go down 3% a week from a given date. Instead of returning a single continuous value,
the result contains an array of three values. Each value is a percentage of the likelihood
that it will either go up 3%, stay within 3%, or go down 3%. We approached designing
the models using many different optimizers, activation functions, number of neurons, and
various quantities of layers before settling on the final models. We also compared three
different optimizers for each problem: Stochastic Gradient Descent (SGD), Adam, and
RMSProp. We compared the results of all three optimizers to determine which one was the
most effective at creating the most accurate model.

1 Introduction
With the rising popularity of numerous cryptocurrencies, generating accurate predictions
would be of interest to many cryptocurrency investors. The efficacy of deep learning has
become evident in its increasing application. Creating neural networks to accurately de-
termine objects within an image is just one instance with incredible accuracy is just one
instance. Most commonly, neural networks are used for classification problems, but pre-
dicting the price of the Bitcoin would be a regression problem. Not only are we using a
relatively novel method to make predictions on the price of the Bitcoin, but the volatility of
the price of the Bitcoin presents a problem for anyone trying to make a prediction. Given
the precarious nature of making predictions on the Bitcoin or any cryptocurrency for that
matter, a moderately accurate model would be a pleasant surprise.

2 Background
Machine learning, a subfield of Artificial Intelligence, has seen a rapid increase in use in
a wide array of different fields. More specifically, deep learning has caught the interest of
many researchers. Deep learning methodologies have seen a rise in prominence due to the
efficacy in areas such as image recognition and natural language processing (NLP). With
deep learning, the use of deep neural networks (DNN) has become the exemplary design
methodology. Deep neural networks are made up of vertices connected by edges that take
data, calculate a result based on the activation function, and then generate an output by tak-
ing the sum of the previous neuron’s input and adding a predetermined bias [8]. The added
complexity of the method allows for the modeling of complex, non-linear relationships
[12]. The use of deep neural networks first became popularized as researchers designed a
deep neural network that could excel at recognizing handwritten digits [5]. Continued suc-
cess has been achieved with more complex and sophisticated images such as distinguishing
between planes and birds [4].

More recently, deep neural networks have attracted the attention of researchers in the fi-
nancial field to make predictions on financial markets [6]. Gathering insights from other
similar models, we looked to create a classification method for the price of the Bitcoin.
Given the nature of deep neural networks and the fact that it is, in a sense, a black box,
we believed that it would make for an excellent research topic. With the aid of a powerful
GTX 1080Ti GPU, we hoped to be able to quickly generate models and test results.

3 Methodology
We implemented two types of prediction models, each with their own deep neural network.
The first model, after being given five consecutive days worth of Bitcoin prices, predicts a
Bitcoin price at a point seven day in the future. The second model predicts the probability
of the Bitcoin price going up 3%, stay within 3%, or going down 3% after the seven-day
interval. Each neural network includes various amounts of hidden layers to predict prices

1

based on five consecutive days of the closing price of the Bitcoin. We are aiming to make a
price prediction for seven days into the future from the last consecutive day. For example,
if we provide as input into the models, the Bitcoin prices for the dates March first through
fifth, then the first model would output the predicted Bitcoin price for March twelfth. On
the other hand, the second model would output the probability of the Bitcoin price for
March twelfth going up 3%, staying within 3%, or going down 3%.

3.1 Optimizer Functions
In the experiments, we tested each model and compiled it with different optimizers. Each
optimizer updates the weight and bias values after each epoch to reduce the loss of the
models. The loss is defined by some function that computes the difference between the
predicted versus the actual.

3.1.1 Stochastic Gradient Descent

The first optimizer we looked at was Stochastic Gradient Descent (SGD). SGD works by
updating the weights by looking at the gradient of each individual training sample and then
updating the weights. This differs from a regular Gradient Descent because it does not
update the weights by looking at the whole gradient which allows for faster convergence
[1].

3.1.2 RMSProp

Resilient Mean-Squared Prop (RMSProp) works similarly to SGD except that it takes the
average recent the magnitude and divides the gradient by it [7]. This works well for calcu-
lating repetitive data sets.

3.1.3 Adam

The Adam optimizer, like RMSProp, is based on SGD. It actually incorporates some el-
ements from RMSProp and combines them with the AdaGrad algorithm [2]. This is de-
signed to work well with sparse gradients and noisy inputs.

3.2 Activation Functions
3.2.1 Rectified Linear Unit

Rectified linear unit, or ReLU for short, is an incredibly popular activation function for
artificial neural networks. ReLU is actually quite a simple algorithm, this function is simply
f(x) = max(0, x) [9].

3.2.2 Softmax

The Softmax activation function, or normalized exponential function, takes an N-dimensional
vector and then normalizes it. All values of the vector are now between 0 and 1. The sum

2

of all the vectors always adds up to 1. This works very well for classifiers as the results can
be interpreted as a percentage.

3.2.3 Sigmoid

The Sigmoid activation function takes whatever input you give it and generates an output
in between 0 and 1. This differs from Softmax because if the input is a vector, it does not
necessarily mean that all values will add up to 0 and 1.

3.3 Deep Neural Network Structure
3.3.1 Price Prediction

Figure 1: Price Model Code

For the price prediction model, the neural network contained 5 input neurons. The next
layer is an output layer that contains a single neuron with a ReLU activation. All five input
neurons are connected to the output neuron. The output from this network is a floating-point
value that represents the predicted price of the Bitcoin a week from the last consecutive day
from the input.

To compile the model, we found that using a mean squared error (MSE) loss function
generated large amounts of loss per epoch. This is most likely do to the nature of the
MSE loss function: MSE = 1

n

∑n
i=1(yi − ỹi)

2. Given that the predicted amount can
differ from the actual by a factor of up to a thousand or more, taking the square of this
and then averaging over the number of training samples results in an uninformatively large
value. Instead, we found that using the mean squared logarithmic error (MSLE) to be more
useful: MSLE = 1

n

∑n
i=1(log10 yi− log10 ỹi)

2. By using the squares of the log of the error,
this metric was much more informative and so was chosen for these experiments.

3.3.2 Classification Prediction

Figure 2: Classification Model Code

For the classification prediction model, we the input layer is the same as before: 5 input
neurons. This time, though, we used 4 hidden layers. The first hidden layer contains 48

3

neurons with a Sigmoid activation function that are densely connected to the input layer.
The second hidden layer is a dropout layer with a dropout rate of 1%. The dropout layer
has been shown to effective as it prevents from overfitting the models to the training data
by randomly treating some input as 0 [11]. After that, the fourth hidden layer contains 48
neurons with a ReLU activation function. The last hidden layer contains 24 neurons with
a ReLU activation as well. The output layer contains 3 neurons with a softmax activation
function.

To compile the model, we used the categorical cross entropy loss function. Categorical
cross entropy is the loss function you want to use with softmax because it computes the
loss based on each category. In our case, we have three categories. For the metric, we used
the accuracy metric built into Keras which, in our scenario, uses the categorical accuracy
metric. This metric, like the categorical cross entropy, is best used with outputs that contain
more than two categories. It calculates the result by finding the largest percentage from the
prediction and then compares it to the actual result. If the the largest percentage matches
the index of the 1, then the measured accuracy increases. If it does not match, the accuracy
goes down. The result is essentially: (numberCorrect)/total.

4 Experimental Setup
We used the Keras library [3] built on top of the TensorFlow library released by Google.

For our setup, we used a desktop computer equipped with a GTX 1080 Ti GPU. This setup
with a powerful GPU allows for rapid model compilation and training the model with the
data. To devise the models, we used the popular deep learning library, Keras, to develop the
models and we used Tensorflow in the backend. To handle the data, we used the Numpy
and Pandas libraries to import and generate our test data. In Keras, the data must be stored
in Numpy arrays.

Since the data was imported using Pandas which uses its own data structure called a data
frame, we then had to convert them into Numpy arrays. To visualize the data, we used
Matplotlib and Seaborn. Seaborn works with Matplotlib to give enhanced graphing fea-
tures. To develop the code for the models, we used the very popular python library called
Jupyter Notebook. It allows users to section portions of code so that large projects can be
worked on in pieces. This allows for rapidly testing many aspects in isolation such as the
data modification or running the model for example.

The data itself is stored in .csv format. The CSV file contains 1748 rows and the only col-
umn we will be concerned with is the one containing the closing prices. The first recorded
date is 2013-04-28, and the last recorded date is 2018-02-05. We generated a plot of the
data points to get a visual impression of what we are working with as shown in Figure 3.

As you can see, the data hovers below $2500 for much of the history and then rapidly
increases more recently. We can also notice a dramatic drop in the price at the end of our

4

Figure 3: Bitcoin Prices

data which could be difficult for the models to interpret.

Now that we have data, we can build the layers for our neural net.

4.1 Price Prediction Setup
To develop the model, we first need to gather the define the input and output data. Af-
ter gathering the data, we then we compile our model, and then train the model with the
training data. To gather the data, we first read the data from the csv file. To gather more
data points for our model, we allow for overlapping dates in the input; in other words, if
our first vector contains these dates: 3/1/17, 3/2/17, 3/3/17, 3/4/17, 3/5/17, the next input
vector would be as follows: 3/2/17, 3/3/17, 3/4/17, 3/5/17, 3/6/17.

We then get the y-value, which is the date we are looking to predict, by adding seven to the
last input date. We stop loading the training data 200 days before our last data point to use
the last 200 days as our evaluation data to test our model with. Sample input data is shown
in Figure 4, while sample output data is shown in Figure 5.

Figure 4: Sample Price Input Data

Figure 5: Sample Price Output Data

5

4.2 Classification Prediction Setup
The process of setting up the model is similar to the regression problem, in fact, the input
data is the same, but there are a few more steps required to generate the expected values.

Processing the data in this case is a bit more involved as it requires additional modification.
We want to input vectors with five columns that represent closing price of the Bitcoin on
five consecutive days. For the output, we computed the percentage of the Bitcoin by taking
the last day from our input (this represents the day we are looking to predict seven days into
the future from) and then subtracting that from the value of the day we are predicting and
then divided it by the predicted days value. Then, based on the percentage we calculated,
we then created a Numpy array to represent where it falls into the three categories. If it
increases by 3% or more, then the output will be a vector [1 0 0], if it stays within 3% the
vector will be [0 1 0], and if it decreases by 3% or more then the vector will be [0 0 1].

5 Results

5.1 Price Results
For the price prediction model, we found that we obtained the best results using 10 epochs.
Anything after that, the loss stayed about the same and we also did not want to overfit the
model as well. The loss is computed using the Mean Squared Logarithmic Error.

5.1.1 Training Results

For the first model, we used Stochastic Gradient Descent with a learning rate (α) of 0.01.
We were able to achieve a loss of 0.0135 using this optimizer as shown in Figure 6.

Figure 6: Pricing Stochastic Gradient Descent Results

For the second model, we used the RMSProp optimizer. With this model, we were able to
obtain a loss of 0.0160 as shown in Figure 7.

For the last model, we used the Adam optimizer. With this model, we were able to achieve
a minimum loss of .0189 as shown in Figure 8.

6

Figure 7: Pricing RMSProp Results

Figure 8: Pricing Adam Results

To our surprise, testing the model against the evaluation data, we found that the model with
the lowest loss in training did not have the lowest loss from the evaluation. The model
that used SGD achieved a loss of 0.0135, but the loss computed from the evaluation set
achieved a loss of approximately 0.02809. The second model, which used RMSProp, had
the second lowest loss during training, but had the highest during evaluation. All models
fared considerably worse during evaluation. This could be the result of the precarious
nature of the price of the Bitcoin. If we refer back to the graph of the data, we can also see
that the evaluation data set contained the more volatile portion of the data.

5.2 Classification Results
For training the classification models, we found that using 5 epochs was the optimal ap-
proach as, for whatever reason, the models losses would tend to increase after the 5th
epoch; if trained with 10 epochs, the loss of the last epoch would double compared to the
5th epoch.

5.2.1 Training Results

For the first model, the optimizer being utilized is RMSProp. We obtained a minimum loss
of 1.0838 and an accuracy of 41.88% as shown in Figure 9.

7

Figure 9: Classification RMSProp Results

For the second model, the optimizer being utilized is Adam. We obtained a loss value of
1.0841 and an accuracy of 40.83as shown in Figure 10.

Figure 10: Classification Adam Results

For the third model, the optimizer being utilized is Stochastic Gradient Descent with a
learning rate (α), of 0.01. We obtained a loss value of 1.0962 and an accuracy of 36.99%
as shown in Figure 11.

Figure 11: Classification Stochastic Gradient Descent Results

5.2.2 Evaluation Results

The results, again, were confounding, but not in the same way as the price prediction
models results. The results of evaluation data were fairly close to the results of the training
data. This leads us to believe that this model is more robust, and can manage to make
predictions with less familiar data.

What was the most surprising result, though, was the result using the SGD optimizer. Dur-
ing training, the model that used SGD performed the worst with a loss of 1.0962 and an
accuracy of 36.99%, but being run against the validation set, it achieved a loss that was less
than what was achieved during training. Not only did it have a loss lower than it did during
training, it also had the lowest loss value of all the models.

What we suspect could be the cause of this is that the original two models might have

8

slightly been overfit. Furthermore, any more epochs would most likely negatively affect
the performance of the model when ran against the validation set. Changes to the model
would be necessary to produce different results as running more epochs would exacerbate
the overfitting dilemma.

6 Conclusions and Future Work
The goal of this research was to see if it was at all possible to create functional deep neural
networks that could generate any kind of result. Fortunately, we exceeded our expectations
by creating two working models that take two unique approaches to generate a solution. We
were able to successfully create a model to solve a classification problem, and we created
a model that could generate predictions for a regression problem as well.

Given the wildly unpredictable nature of the price of the Bitcoin, creating an evenly re-
motely accurate model was what we were aiming for. Although the results arent perfectly
accurate, they do have predictive capability. In a related research paper conducted at the
School of Computing at the Nation College of Ireland obtained results that were 52% ac-
curate [10]. Their classification model was just looking at whether or not the price of the
Bitcoin will increase or decrease. Given that they used far more complex models such as
LSTM and RNN models, our results in comparison are quite impressive.

With the nature of deep neural networks and their generality, there are a countless number
of applications for similar models in a wide variety of areas. Applications in virtual envi-
ronments seems like another topic of interest. Applying deep neural networks in simulated
game worlds would allow for a near endless amount of research topics and experiments.
We believe that the future is incredibly bright for this technology and we hope to conduct
further research in the field.

9

References
[1] BOTTOU, L. Large-scale machine learning with stochastic gradient descent. In Pro-

ceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[2] BROWNLEE, J. Gentle introduction to the adam optimization algorithm for deep
learning, Jul 2017.

[3] CHOLLET, F., ET AL. Keras: Deep learning library for theano and tensorflow. URL:
https://keras. io/k 7 (2015), 8.

[4] CIREGAN, D., MEIER, U., AND SCHMIDHUBER, J. Multi-column deep neural net-
works for image classification. In Computer vision and pattern recognition (CVPR),
2012 IEEE conference on (2012), IEEE, pp. 3642–3649.

[5] CIREŞAN, D. C., MEIER, U., GAMBARDELLA, L. M., AND SCHMIDHUBER, J.
Deep, big, simple neural nets for handwritten digit recognition. Neural computation
22, 12 (2010), 3207–3220.

[6] DIXON, M., KLABJAN, D., AND BANG, H. J. Classification-based financial markets
prediction using deep neural networks, Mar 2016.

[7] HINTON, G. Csc321 winter 2014 - calendar. retrieved from lecture 6 slides.pdf slide
show.

[8] KANG, N. Introducing deep learning and neural networks - deep learning for rookies
(1), Jun 2017.

[9] LI, F.-F., AND KARPATHY, A. Convolutional neural networks for visual recognition,
2015.

[10] MCNALLY, S. Predicting the price of Bitcoin using Machine Learning. PhD thesis,
Dublin, National College of Ireland, 2016.

[11] SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., SUTSKEVER, I., AND

SALAKHUTDINOV, R. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[12] SZEGEDY, C., TOSHEV, A., AND ERHAN, D. Deep neural networks for object detec-
tion. In Advances in neural information processing systems (2013), pp. 2553–2561.

10

