
	

Universal AJAX Interface Generation

Alex Boettger, Jared Martin, and Randy Campbell,
Department of Mathematics

Morningside College
Sioux City, IA 51106

{ alb019, jam021,campbell}@morningside.edu

Abstract

There are many web client-side frameworks and many web server-side frameworks.
However, there are few frameworks designed to facilitate AJAX communication between
client and server that provide support for both sides of communication. Those that do
exist generally provide a compiler for the client-side language that generates JavaScript
code (such as Pyjs for Python). We have developed a proof of concept application for
generating AJAX interface code for both client and server. The interface code ensures
that there can be no mismatch between what is sent by one end and expected by the other.
On each side, data is sent via a simple function call. The software is designed to enable
creation and integration of new modules for server-side languages, allowing it to become
(as new modules are added) language agnostic on the server-side.

	
	
	
	
	
	
	
	
	
	
	
	

	

1	

1 Introduction

Anyone that has ever created an AJAX interface knows that the process can be long and
error prone. It would be much easier to create these interfaces with a framework that
would generate the code for all the functions needed to package, send, and receive data.
Then a developer would need to only worry about writing code that performed the
desired task.

Most web frameworks focus either on the client-side or the browser-side, but not both.
Those that do try to address both generally do so via some sort of template scheme or a
compiler that converts code from the server-side language to JavaScript.

This project focuses on generating custom AJAX communication code for the browser
and the server in a way that readily allows code generation modules for server-side
languages to be added. This allows the system to become server-side language agnostic.
The project has passed the “proof of concept” phase and is in process of becoming an
easily usable tool.

We gratefully acknowledge Morningside College’s funding of this project via a Summer
Undergraduate Research Program (SURP) grant.

2 Goal of Project

The goal of the WinG project is to create a framework that creates custom AJAX
interface code for both the server-side language and for JavaScript on the client side in a
way that allows the framework to be be easily extended by adding generators for server-
side languages. There are several advantages to generating the AJAX interface code for
browser and server. One is the time saved and programming errors averted by removing
from the developer the burden of writing this code. In fact, the only code the developer
needs to write is code that does the specific task that a server-side script is supposed to
perform given data from the browser or that a JavaScript function is supposed to perform
with data it receives from the server. It also ensures that there can be no data mismatch
errors from browser to server or server to browser.

3 Project Overview

The system provides AJAX interactions via function calls.

JavaScript code accesses the server via a simple function call, passing in data to be sent
as parameters. Each such function on the JavaScript side has a corresponding function of
the same name and having the same parameters on the server that does server-side
processing of the data.

When the server-side script is ready to send data back to browser, it does so with a
function call. The data is directed to a JavaScript function of the same name and having

	

2	

the same parameters as the function called to send back the data. The JavaScript function
then does the desired task, using the returned data.

Figure 1 illustrates the underlying architecture used to mediate AJAX communication,
using a login interaction as an example. Rectangles represent components whose code is
entirely generated by the system. Boxes with angled upper right corners represent
components for which a function skeleton is generated. The code that needs to be added
to the skeleton is the just the body of a function.

Figure 1: Basic Communication and Functionality of Interface

To ensure that the system could be easily extended to various server-side languages, we
split the project into two main categories: client-side development and server-side
development. Splitting the project into these two parts allowed us to focus on what each
side needed to do in order to ensure accurate communication. It also enabled us to
simplify the work of creating code generation modules for different server-side
languages.

The client (browser) part is universal because the code generated for it is JavaScript. The
code generated for the server must be specific to the language used on the server. Thus,
there must be a code generation module available for the desired server-side language.
At present, there is a module for C++ and a module for Python.

	

3	

Figure 2 shows the architecture of the system.

Figure 2: System Architecture

To begin development of the interface we first had to develop a description file syntax.
Description file information provides the information necessary to generate code for
browser and server. It provides the server domain name and path on the server to where
the server-side scripts will be located. It also defines the function names, parameter
names, parameter types, the AJAX request type (post or get), and whether or not a
session key should be sent to the server for server-side functions. It identifies functions
as being in cgi or fast-cgi scripts. In addition, it provides for server-side functions
intended to receive uploaded files and server-side functions intended to download files.
It also defines the function names, parameter names, and parameter types of functions
that receive data from the server.

	

4	

3.1 Description File Syntax

We use the example description file in Figure 3 to illustrate some of the description file
syntax.

Figure 3: Basic Description File

The line named Path contains the online location of the cgi or fcgi files. Following that is
the section that contains all of the information for constructing the cgi functions (tag 1).
Description files can define CGI or FCGI scripts (or both if the project demands it).

Tags 2-6 show elements of function descriptions. The first word represented by tag 2 is
the name of the function. Tags 3 and 4 provide a parameter declaration. STRING refers
to the type that is expected for this parameter and uid, is the name of the parameter.

Types currently provided by the system are string, int, real, string array, int array, and
real array. (JSON can be sent in a string parameter.) A function can have zero or more
parameters.

	

5	

Some additional information follows a function declaration’s parameter. First is request
type (GET or POST) or a file upload/download specifier. The options are: GET, POST,
DOWNLOAD, UPLOAD[1], UPLOAD[1P] UPLOAD[*], UPLOAD[*P]. Because file
uploads require POST (and we default to POST for downloads) a request type is not
needed for functions doing file upload and download.

File handlers defined with a 1 in the square brackets handles one file upload while the file
handlers defined with a * handle multiple files. The P in the file handling designators are
used to tell the interface that the browser to track the progress of the upload or download.

A request type or file upload/download specifier may be followed by a session key flag,
as seen in the item tagged 6. This directs the system to include session key handling in
the communication. This can be useful for session handling without using cookies.

The item tagged 7 provides declarations for JavaScript functions that process data
received from the server.

3.2 Generating Javascript

There are two parts to the Javascript code for the interface. One is a library of general
functions used by the system, which is included in the HTML file. The other is a
JavaScript file containing the custom AJAX interface code. This is generated by the
system for the application and is also included in the HTML file. The name of this
generated JavaScript file is selected by the user at the time that the file is generated.

Suppose that a generated JavaScript file is given jader.js as its name. This file will
contain a definition for an object named jader that contains all of the JavaScript functions
necessary to satisfy the requirements given by the description file. The jader object
organizes functions in sub-objects within itself. All functions for calling a cgi-script will
be members of the jader.cgi object. All functions for calling an fcgi-script will be
members of the jader.fcgi object. All receiver functions will be members of the
jader.skel object.

The jader object will also contain a universal callback function that receives data from
the server, determines which receiver function should receive it, splits up the data
received into appropriate parameters for the receiver function, and calls the receiver
function with the parameters.

The functions that are members of jader.cgi and jader.fcgi are fully generated. For
functions that are members of jader.skel, the system generates function skeletons where
code in the body of the function is created by a developer.

	

6	

3.2 Generation of Server-Side

The server-side aspect of the interface requires a module for each server-side language
used. Currently, the interface supports cgi and fcgi scripts written in C++ and Python cgi
and wsgi scripts. The modularity of the interface allows for easy adaptability to future
languages. Even though Python and C++ are two very different languages, it was easy
and efficient to add the module to allow for Python based programming after the C++
module was done.

Although the code generated for the server language includes some common boilerplate,
most of it is customized code for the application. It includes a main program and
functions that match, in name and parameters, the JavaScript functions used to initiate an
AJAX call. The main function processes the data sent by the browser (including
conversions from strings to integers or floating point numbers where needed) and then
calls the appropriate function. This function performs the required task, and then calls a
function to send data back to the browser. The name of this function, and its parameters,
match those of the JavaScript receiver function that will process the data when it reaches
the browser.

The encapsulation of AJAX communication via function calls removes all tasks from the
developer that can be removed. The only thing left for the developer to do, relative to
AJAX communication, is to write code that processes data received by the server and
code that processes data sent to the browser. Everything else is automated.

4 Future Directions

The WinG project was a proof of concept project. It was successful. It can be used as a
development tool now. However, there are several ways it can be made more useful.
Among them are:

1. Currently every module has the description parser embedded in it. Decoupling
code generators from the parser by using an intermediate file would make it easier
to create code generation modules for different server-side languages.

2. Tracking changes so that only description file items that are new or modified need
to be generated would greatly simplify the incremental construction of web apps
using the system. An intermediate file (as described in the previous item) would
greatly facilitate this.

3. Adding communication with websocket servers (including the option of
automatically generating a skeleton for a websocket server) would significantly
expand the types of apps that could be created more quickly by using this system.

4. Adding modules for more server-side languages would also greatly increase the
usability of this system.

	

7	

5 Conclusion

Through the summer the students developed a proof of concept system for generating
AJAX interface code. The system significantly decreases the time required to create web
applications by generating much of the required code. Experience with the test
applications we created often had 50% or more of the code generated by the system. The
code generated by the system also precludes data mismatch and other sorts of errors that
can result from handcrafted AJAX communication code. Having proved the viability of
this approach, the next step is to convert the prototype into a convenient and complete
tool.

