
 
 
 

Lofting 3D Shapes 
 

Robby Prescott 
Department of Computer Science 

University of Wisconsin – Eau Claire 
Eau Claire, Wisconsin 54701 
robprescott715@gmail.com 

Chris Johnson 
Department of Computer Science 

University of Wisconsin – Eau Claire 
Eau Claire, Wisconsin 54701 

johnch@uwec.edu 
 
 

 
Abstract 

 
On the most fundamental level, the computer understands 3D objects as cluster of             
connected triangles. In fact, the first half of the widely used OBJ file format simply               
consists of a list of vertices (as x-, y-, z-coordinates), and the second half of the file                 
follows with a list of triangular faces (as indices into the vertex list). In theory, it is                 
possible to construct OBJ file for a torus within a text editor, but this would be a                 
tremendous waste of time. Approaching the task programmatically, on the other hand,            
creating a torus, along with an extensive list of other shapes, can be completed using a                
few lines of code and some basic geometric intuition. Although, this hinges on the              
assumption that the proper solidifying functions exist.  
 
For this research project, we are designing a function titled ​loft that provides method to               
solidify objects from a list of polygons or ​closed vertex paths​. The goal of loft is best                 
described in an inquisitive manner outlined in the paragraph that follows. 
 
Imagine a triangle and a five-pointed star of similar size are plane parallel and not               
coplanar. How would we connect the vertices of the triangle and the five-pointed star to               
create a closed 3D shape? The issue here is that the choice isn’t obvious, especially for a                 
computer, for these two shapes differ in vertex cardinality. Furthermore, as the problem is              
generalized allowing various shapes, sizes, orientations, and nonplanar paths, choices for           
these vertex connections become increasingly less obvious. This is the exact problem the             
loft function aims to solve. In order to complete this task of generating a 3D object from                 
an arbitrary contour, we must remove all ambiguity by defining the aesthetically desired             
properties of a general 3-dimensional shape. Creating these definitions lends itself to            
some interesting questions that blur the line between beauty and mathematics.  



1 Introduction & Motivation 

Like any function, loft is given parameters and completes a certain task with the said               
parameters. Before we unravel the parameters of the loft function, we must become             
acquainted with a few terms. A ​vertex consists of an x-, y-, and z-coordinate. These               
vertices are often strung together into an ordered list called a ​path​. Lastly, an ​array ​is an                 
ordered list of elements, typically of an arbitrary yet uniform type. Thus, the parameters              
of the loft function are simply an array of paths.  

Once given the data as an array of paths, the loft function creates connections between               
the vertices of the consecutive elements within the array of paths. In turn, these              
connections generate the triangular faces that will constitute the final 3-dimensional solid.            
Although the task seems rather simplistic, this function requires a generous amount of             
optimization due to the unobvious nature of the decisions creating each of these vertex              
connections. In fact, if the computer were to perform the algorithmically undesired “brute             
force” method, examining every possible combination of vertex connections between two           
paths, path ​a (​p​a​) and path ​b (​p​b​), the number of combonations would increase              
exponentially as the number of vertices in either of the paths increases. Since the two               
paths can each be abstracted to a resemble a disjoint set within a bipartite graph, we can                 
can determine the total number of possible vertex combinations between two paths by             
calculating the total number of unique bipartite graphs given by the expression: 

Expression 1 

where |​p​| denotes the number of vertices in the disjoint set or path ​p​. Each term in the                  
expression resembles the entries within the (|​p​a​||​p​b​|)​th row of Pascal’s Triangle. Since the             
the sum of all the entries in the ​n​th row of Pascals Triangle is equal to 2​n​, the following                   
equation yields the total number of possible vertex combinations between ​p​a​ and ​p​b​: 

Equation 1 
If we were to extend this notion to account for an array containing ​n paths, the following                 
expression would yield the total number of possible vertex combinations for an array             
containing ​n​ paths: 

 Expression 2 
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where ​p​i is the path at the ​i​th index in the array. The total number of combinations                 
exponentially increases as ​n increases or any given ​p​i increases, and therefore the             
computation time reflects these increases. For this reason, the loft function’s algorithm            
utilizes inherent geometric properties of the paths in question to create the optimal             
connections to solidify any given shape in linear computation time.  
 

2 The Algorithm 

The loft function only focuses on two consecutive paths in the array at one time. It                
connects the paired paths until it reaches the final pair in the array. For example, an array                 
of size ​n ​with paths at a given index ​i ​denoted ​p​i would begin by lofting the paths ​p​0 and                    
p​1​, then ​p​1 and ​p​2​, and so on until it reaches the final pair ​p​n-2 and ​p​n-1​. For each of these                     
pairs, the process for creating connection between the paired paths’ vertices can be             
broken into a series distinct steps that follow this basic outline: 

 
1) Make copies of the paths to manipulate in 3D space 
2) Map nonplanar paths to an appropriate plane 
3) Perform linear transformations to make the current pair of planar paths coplanar 
4) Center both paths over the origin 
5) Reverse the order of the indices if path traversal is clockwise 
6) Determine which path has less vertices (​p​S​) and which has more (​p​L​) 
7) Scale ​p​L​ to completely encompass ​p​S 
8) Generate rays from the origin that extend through the edge midpoints of ​p​S 
9) Connect vertices on ​p​L​ to the vertices on ​p​S​ in the sections created by the rays 
10) Find appropriate connections for unconnected vertices in ​p​L​ if they exist 
11) Find appropriate connections for unconnected vertices in ​p​s​ if they exist 
12)  Make the final connections that cross each of the rays 
13)  Generate a connected list of triangles 

 
2.1 Make Copies of the Paths to Manipulate in 3D Space 

This step seems somewhat obvious, yet it is worth noting. In order to exploit the intrinsic                
geometric properties of the pair of paths in question, several alterations must occur to the               
vertices’ coordinates of the original path. The vertex connections are made with the             
altered, duplicate versions of the paths, and when exporting the final structure as a list of                
triangles, these connections are mapped back to the original paths using the vertex indices              
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from the corresponding altered path. Therefore, we must preserve the original two paths             
in some form. This is easily completed by creating deep copies of the pair of paths in                 
question. 
 
2.2 Map Nonplanar Paths to an Appropriate Plane 

Sometimes the vertices within a particular path are not coplanar. In which case, it is               
appropriate to perform the 3-Dimensional analogue of the least squares regression           
algorithm over the set of vertices within the path to generate a plane that is suitable                
‘average’ for the vertices of the path. Each of the vertices in the path are then projected                 
normally onto the newly generated plane, in turn making each of the vertices in the path                
coplanar. 
 
2.3 Make the Current Pair of Planar Paths Coplanar 

The entire algorithm for generating vertex connections is aiming for geometric simplicity.            
Removing a dimension from consideration is a logical step in this simplistic direction.             
Although it is arbitrary which plane is chosen, one elegant choice forces the paths to be                
parallel to the z = 0 plane. For when the planes of the path are oriented in this fashion, we                    
can remove the z-coordinate from consideration for all vertices. This leaves every vertex             
with only an x- and y-coordinate, in turn reducing the 3-dimensional problem to a              
2-dimensional problem. A mathematical method for rotating/orienting these planes is          
most easily completed with a matrix transformation.  
 
2.4 Center Both Paths over the Origin 

 

       Figure 1: uncentered paths            Figure 2: centered paths 
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Once the pair of paths are located on the xy-plane, it is useful to “pin them to the origin”                   
so to speak. This informal term involves translating by the additive inverse of the center               
point for each path. For a given path, this center point is calculated by taking the mean of                  
the x- and y-coordinates. 

 
2.5 Reverse the Order of the Indices if Path Traversal is Clockwise 

When making connections, algorithmic efficiency is optimized if the paths traverse           
around the origin in the same direction. Again, it is arbitrary which direction is chosen,               
but by convention, counterclockwise is often chosen to be the direction of positive             
traversal. For the algorithm, a test is performed to determine if a given path traverses               
clockwise around the origin. If this is the case reverse the order of the vertex indices                
within the path. Do the same list reversal operation to the corresponding preserved path              
in order to maintain the index mapping between paths.  
 
2.6 Determine ​p​S​ and ​p​L 

This step simply involves comparing the sizes of the paths and assigning each path to the                
appropriate variable. Note that this assignment is a shallow copy of the path and points to                
the same memory address. Although if a deep copy is made, the algorithm still functions               
as expected, it will just use unnecessary memory. In the event where both path’s sizes are                
equal, ​p​S​ and ​p​L​ are arbitrarily assigned.  
 
2.7 Scale ​p​L​ to Completely Encompass ​p​S 

This step is not required per say. However, for debugging purposes it is imperative to               
have a 2-dimensional visual of the current pair of paths in order to immediately and               
plainly discern where the connections are behaving unpredictably. Scaling the larger path            
lends itself to a cleaner image with minimal line path intersections and vertex             
connections from ​p​S to ​p​L oriented radially from the origin. Scaling the path will not               
affect the overall outcome of the vertex connections. This is explained in the following              
non-rigorous, yet intuitive manner.  
 
Since the vertices in a path consist of only x- and y-coordinates, we may think of a path                  
as a set of 2-dimensional vectors. If you scale a set of vectors the angle between them                 
will not change. Furthermore, since the path is centered on the origin, scaling the center               
vector will not change its value, and therefore, will not translate the overall path. As a                
consequence of this, the vertices of the scaled path will remain between the same rays               
that emanate from the origin before and after scaling. Thus the connections generated by              
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the algorithm are unaffected by the scaling of the paths at this stage. Before scaling,               
however, it is important to make a deep copy of ​p​L at this stage denoted ​p​|L|​. This ​p​L                  
duplicate preserves relative distances to ​p​S​ that will become useful in later steps. 
 

 
Figure 3: scaled large path encompassing the small path 

 
2.8 Generate Rays from the Origin that Extend through the Edge           
Midpoints of ​p​S 

Ray generation is the essential step to the loft function’s algorithm. It is the geometric               
exploit that determines most of the vertex connections. To generate these rays, calculate             
the midpoints for each of the edges on ​p​S​. These ​edges are simply the line segments                
between the vertices on ​p​S​. For each of these midpoints, create a line segment that               
emanates from the origin, intersects the given midpoint, and extends an arbitrarily far             
distance away from the origin. 
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Figure 4: rays from the origin through the midpoints of the small path 

  
2.9 Connect Vertices on ​p​L to the Vertices on ​p​S in the Sections Created              
by the Rays 

Generally speaking, most of the connections will be created in this step. Note that each               
section generated by the rays contains only one point on ​p​S​. Within each of these sections,                
iterate through the points on ​p​L that fall within the current section, and connect them to                
the single point on ​p​S​.  

 
Figure 5: vertex connections seen in both the graphical form (left) and the adjacency 

matrix form (right) in green 
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Storing the connections can be handled in a variety of ways. The method I propose is an                 
adjacency matrix. This adjacency matrix provides a tabular visualization for the           
connections between indices, as well as a clean way to export the triangles later on. In the                 
adjacency matrix, the rows represent the indices on ​p​L​, and the columns represent the              
indices on ​p​S ​. Although, this row/column assignment is completely arbitrary since it is              
equally valid viceversa. The values within the matrix are of boolean type, where ​true              
represents a connection between indices and ​false ​represents no connection between           
indices. Speaking in terms of the adjacency matrix, a valid and exportable list of              
connections can be visualized by an unbroken path of true values that wraps around from               
the right edge to the left edge, and similarly from the bottom edge to the top edge.                 
Furthermore, this path should never bifurcate. An equally descriptive definition for the            
unbroken path involves every true cell having exactly two true cells to its immediate              
right, left, top, or bottom (wrapping included). 
 
2.10 Find appropriate connections for unconnected vertices in ​p​L if they           
exist 

Seldomly, a vertex on ​p​L will fail to get connected to any vertex on ​p​S​. The test for this                   
case simply involves checking for an empty row in the adjacency matrix. This skipped              
connection usually occurs when the the vertex intersects a midpoint ray from ​p​S​. In this               
instance, determine the closest vertex on ​p​S to the vertex on ​p​|L| whose index corresponds               
to the unconnected vertex on ​p​L​. Add the connection between these indices to the              
adjacency matrix. 

 
2.11 Find appropriate connections for unconnected vertices in ​p​S if they           
exist 

More commonly, a vertex on ​p​S will fail to get connected to any vertex on ​p​L​. The test for                   
this case simply involves checking for an empty column in the adjacency matrix. This              
skipped connection occurs when no vertices on ​p​L fall within the section outlined by the               
rays on either side of the unconnected vertex on ​p​S​. In this instance, determine the closest                
distance from the unconnected vertex on ​p​S to one of the two vertices on ​p​L that located                 
radially immediately before and after the ​p​L verticeless section outlined by the rays. Add              
the connection between these indices to the adjacency matrix. 
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2.12 Make the Final Connections that Cross Each of the Rays 

 
Figure 6: vertex connections for the quadrilateral/tetrahedral cases seen in both the 

graphical form (left) and the adjacency matrix form (right) in magenta 
 
Notice the vertices’ indices that are separated by the rays. Quadrilaterals are still present              
between the connections. Since the OBJ file format requires a list of triangular faces, we               
need to make a decision on a connection between the two kitty-corner options. This              
connection will divide a given quadrilateral into two triangles, making the the desired             
‘unbroken path’ in our adjacency matrix. In our original 3-dimensional paths, the            
quadrilateral is actually four points floating in 3D space. This may also be thought of as a                 
tetrahedron. Unless the four points in our original paths are coplanar, one of of the two                
options for the connection will result in a concave surface for that portion, the other will                
result in a convex surface for that portion. Since—arguably—3D solids look better when             
they are entirely convex, you may wish to set the decision to automatically choose the               
convex option by default. However, giving the loft function an optional parameter that             
signifies the convex/concave decision to make for these tetrahedral cases gives the user             
more control over the final shape they desire to create. 
 
2.13 Generate a Connected List of Triangles 

Once the desired ‘unbroken path’ of connections within the adjacency matrix is complete,             
the triangles can be generated. Traverse the path of true values on the adjacency matrix               
and map the row and column numbers of the current cell to the indices in the original                 
path. The current two indices refer to the first two vertices on the original paths for the                 
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triangle to be created. The last vertex of the triangle to be created is determined by                
looking at the next cell in the traversal and discerning which index changed from the               
previous cell. Format the final list of triangles so that it matches the OBJ file format and                 
export the file. 

 
Figure 7: the final 3D shape generated by the vertex connections from the previous steps 
 

3 Conclusion & Inspiration 

Once completed, various shapes of complex geometries can be made with ease.            
Illustrated below are a few examples. 
 
 

 
Figure 8: examples showing off the aesthetic capabilities of the loft function. 

 
The current algorithm still could use improvement. Although it performs splendidly for            
all convex path cases, it only works for a subset of concave path cases. The concave path                 
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cases that cause problems are characterized by the following property. When the center of              
the path is located at the origin and the vertices of the path are traversed in the positive                  
polar coordinate fashion, the theta value decreases at least once between two consecutive             
vertices in the path. This type of concavity makes the ray approach invalid. A proposed               
possible solution and method of implementation involves finding the convex hull of the             
problematic path. This divides the vertices of the path into two sets: the vertices that are                
apart of the convex hull (​H​) and the vertices that are not part of the convex hull (​N​).                  
Remap the vertices in ​N that occur in consecutive ordered subsets to the edge of the                
convex hull between the two surrounding vertices on the path in ​H​. Including this as part                
of the loft function procedure between steps 5 and 6 could potentially account for a wide                
variety of concave path cases.  

 
No matter how many improvements the algorithm undergoes, some paths can never be             
properly accounted for. Such paths have properties of self intersection, knots, and other             
complex geometries. 
 
Lastly, the current algorithm only accounts for only genus-0 surfaces (topologically           
equivalent to a sphere), and genus-1 surfaces (topologically equivalent to a torus).            
Interesting variations implemented in the future may be generalized to include genus-​n            
surfaces.  
 
 
 
 

10 
 


