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• It is observed that the LSTM network outperforms 

the traditional RNN due to its ability to learn long 

term dependencies as the system grows.

• LSTM networks can efficiently model and predict 

dynamic systems such as the Lorenz System.
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• Generate data using the Lorenz System.

• Split the data into training and testing sets.

• Convert the data and fit the neural network models in Keras

• Plot and compare the results for each network.

In nonlinear dynamical systems, long-term 

prediction is extremely challenging. Small 

perturbations in an initial state can grow 

exponentially in time and result in large 

differences in a later advanced state - a behavior 

known as chaos. Chaotic systems tend to have 

sensitive dependence on initial conditions, much 

like the Butterfly Effect. Recurrent Neural 

Networks (RNNs) are dynamic and allow for 

modeling of chaotic behavior. In this paper, we 

study and investigate the the modeling and 

prediction abilities of a Long Short-Term Memory 

(LSTM) recurrent neural network in dynamical 

systems with chaotic behavior. In particular, we 

explore the Lorenz System - which comprises of 

a nonlinear system of differential equations 

describing two-dimensional flow of a fluid, and 

describe an architecture that models the 

systems’ behavior. 

Abstract

RNN and LSTM Models on 
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Introduction

Objectives

• Investigate the modeling and prediction abilities of a 
traditional Recurrent Neural Network (RNN) and a “Long 
Short-Term Memory” (LSTM) RNN, when the input signal 
has a chaotic nature. 

• Study the effectiveness of both networks in predicting 
the Lorenz System one-step ahead.

σ = 10.0, ρ = 28.0, β = 8/3

Methodology

Experiments

Shape of training input: (7912, 10, 3)

Shape of training output: (7912, 3)

Shape of test input: (3956, 10, 3)

Shape of testing output: (3956, 3)

Analysis

Reshape the data into a [samples, time steps, features] format.

Training set has 70% of data and testing, 30%.

Conclusion

References

Both the traditional RNN and the LSTM were 

applied to chaotic data generated from the 

Lorenz System.

Testing with single starting point and Predicting 

one-step ahead:

Shape of data: (1, 1000, 3)

Shape of windowed data: (1978, 10, 3)

RNN LSTM

Average Prediction 

Error

0.1691547258621755 0.09410667635011637

Model Epochs Validation Loss

RNN 50 0.2149

LSTM 50 0.1523

RNN 75 0.0722

LSTM 75 0.0202

RNN and LSTM Predictions on 

Training data

model = Sequential()
model.add(LSTM(16, input_shape=(None, 3)))
model.add(Dense(3))
model.compile(loss='mean_squared_error', optimizer='adam')
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One-step prediction performance on test data. 

x, y, z – physical properties of the system w.r.t time


