

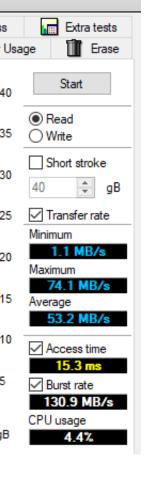
How Stressors Affect Hard Drive Performance

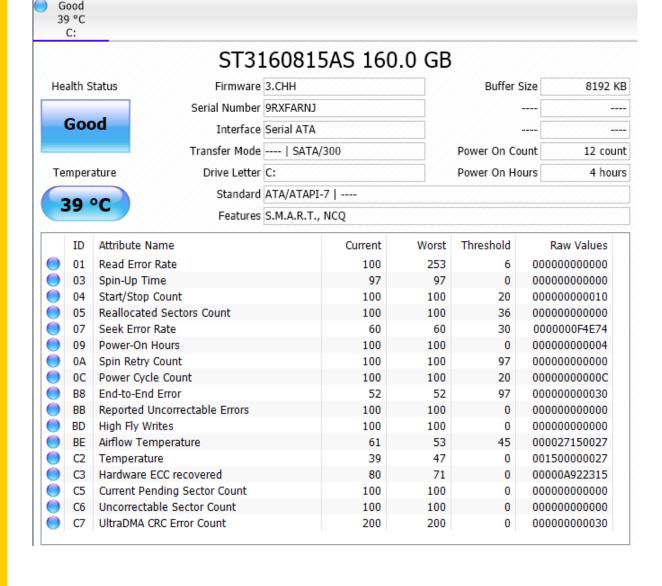
Introduction

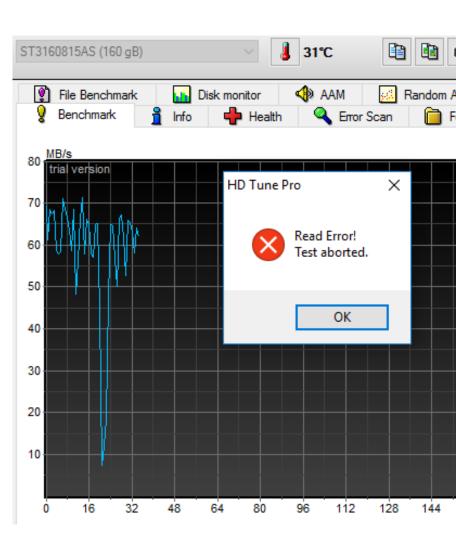
- Personal computers are used every day and all users want their computers to perform in the best way possible.
- Computer hard drives have changed greatly, from size to capacity and durability.
- Hard drives are known to be very fragile and are to be handled with care.
- Warranties can be void if hard drives undergo certain conditions, especially when opened.
- Developers have created software to understand and interpret codes that have been put out by the drives.
- Operating systems take advantage of SMART software by displaying warnings.

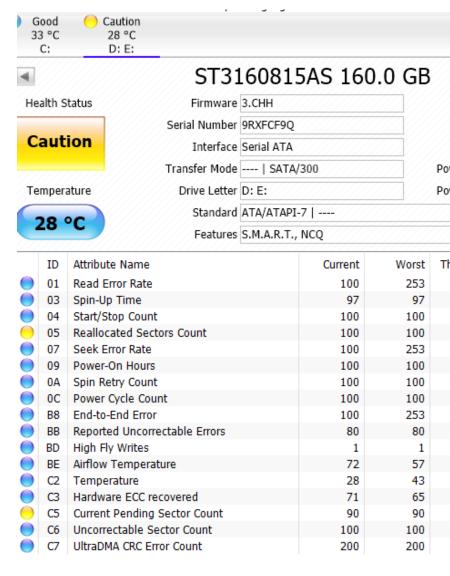
Problem

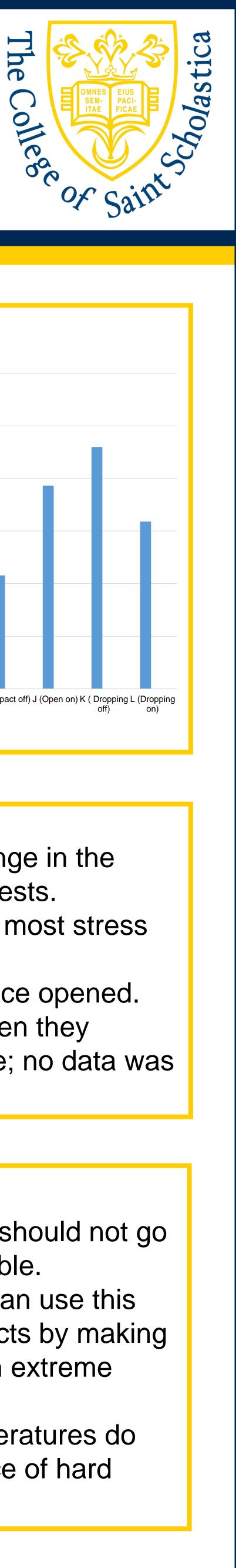
- As technology continues to advance, computers need the best performing components to handle any form of stress that may occur.
- Have computer engineers tried to improve the durability of desktop hard drives to handle extreme stress?
- What software can be used to predict and prevent errors when under physical stress?

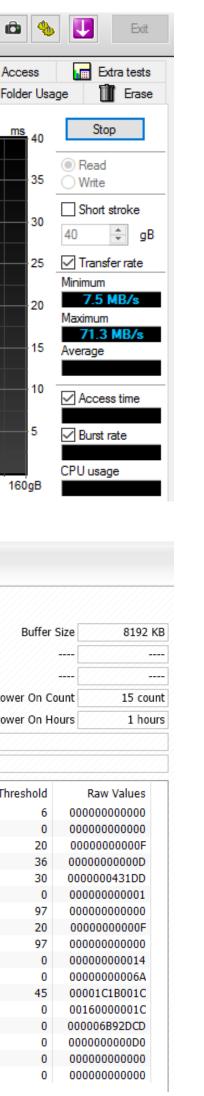

Research Questions


- How fragile are hard drives?
- How are hard drives affected by physical stress?
- Do magnets break hard drives/computers?
- Does temperature make a difference with performance?
- What happens if a hard drive is dropped?
- How does impact affect performance?

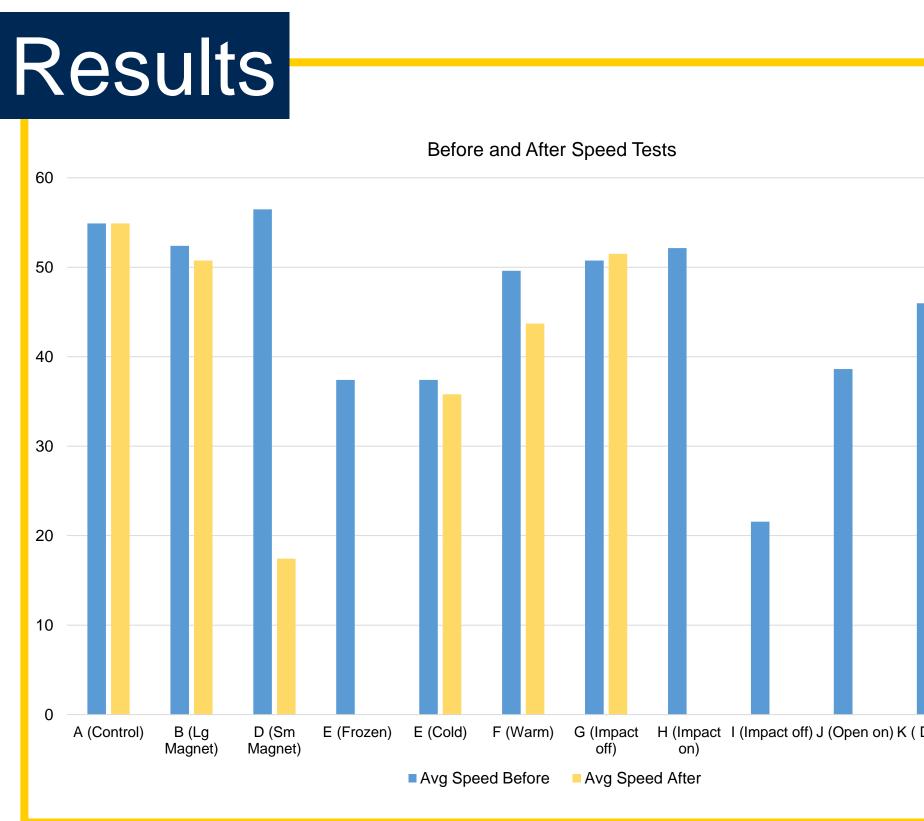

Abby Panfil Thomas Gibbons, Research Advisor Department of Computer Information Systems, The College of St. Scholastica, Duluth, MN


Methodology





Data


Drive	Test	Error Code	Comment
			•Drive slowed down within an inch or so away
			•Sounded like it was "working harder" to operate HD
			Tune aborted each time about 3/4 way though
			•SMART error showed up
			•Drive still functional after first exposure to magnets
			•After the second time, the drive began to make a
В	Large Magnet	C5	crunching sound and the computer wasn't responding
	jj.		•Little magnets did not affect the performance at all
			•Large magent got too close and the drive began to make
			a "sizzling" noise
			•Became unresponsive
D	Small Magnet	C5	•Drive was not recognized when rebooted, but was
			•Same hard drive that was frozen
			•Started up and performed tests just fine
E	Cold	No Error	•Startup temp 15C, after test 25C
			•Started up, but turned off immediatly after bootup
			•Drive became very wet because of condensation
E	Frozen	No Error	•(Drive did start up eventually once it dried a day later)
			•No changes in speed
			•Warnings popped up once it hit 60-61C
F	Warm	No Error	•Max heat for test 65C
H		C5, C6	Test aborted after second impact
	impact on		•Opened while off, then put cover back on during
			operation
			•Drive performed normally but then began to slow down
			•Screen went black after testing and restarted
			•Stuck on Windows bootup screen
			•"To skip disk checking, press any key" showed up
1	Open off	No Error	Drive wouldn't boot
			•Exposed open drive while in operation
			•Began to make a click/grinding noise and wouldn't boot
			•Put the lid back on and it operated differently but only a
J	Open on	No Error	cursor appeared after bootup, never worked again
K	Dropping off	05, C5, C6	
			•On the second drop, test completely stopped and started
			to make a clicking noise
			•Programs aren't responding but the desktop is still
			functional
	Dropping on		•Slow and laggy
-		No Error	 Rebooted and only saw a cursor

Error Key	Name
01	Read Error Rate
03	Spin-Up Time
04	Start/Stop Count
05	Reallocated Sec
07	Seek Error Rate
09	Power-On Hours
0A	Spin Retry Count
0C	Power Cycle Cou
B8	End-to-End Error
BB	Reported Uncorre
BD	High Fly Writes
BE	Airflow Temperatu
C2	Temperature
C3	Hardware ECC re
C5	Current Pending
C6	Uncorrectable Se
C7	UltraDMA CRC E

tors Count			
int			
ectable Errors			
ure			
ecovered			
Sector Count			
ector Count			
rror Count			

Observations

- Many drives had little or no change in the average speed after the stress tests.
- The drives that experienced the most stress were unrecoverable.
- Hard drives automatically fail once opened.
- Magnets only have an effect when they physically interrupt the hardware; no data was corrupted.

Conclusion

- Hard drives are very fragile and should not go under any form of stress if possible.
- Computer hardware engineers can use this data to help improve their products by making them more durable, especially in extreme conditions.
- Below and above average temperatures do not affect the overall performance of hard drives.

Acknowledgements

This research was supported by the Clare Boothe Luce Foundation.