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Abstract 

Computed tomography (CT) is a beneficial imaging tool for diagnostic purposes. CT 

scans provide detailed information concerning the internal anatomic structures of a 

patient, but present higher radiation dose and costs compared to X-ray imaging. In this 

paper, we build on previous research to convert orthogonal X-ray images into simulated 

CT volumes by exploring larger datasets and various model structures. Significant model 

variations include UNet architectures, custom connections, activation functions, loss 

functions, optimizers, and a novel back projection approach.  
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1 Introduction  

Computed tomography (CT) allows for detailed views of anatomic structures by 

reconstructing hundreds of X-ray images taken from a full rotation around a patient’s 

body at various angles to produce three-dimensional volumes. The information acquired 

by a CT scan is beneficial to the diagnostic process as an exploratory analysis tool but is 

resource-demanding and requires high levels of ionizing radiation exposure with an 

average effective radiation dose of 7 mSv per chest CT [4]. In contrast, two-dimensional 

X-ray imaging is a widely used medical imaging modality as it is resource-efficient and 

results in a lower average radiation dose of 0.1 mSv per chest X-ray [4]. Although more 

efficient, X-rays lack the detailed spatial information obtained from a three-dimensional 

imaging modality. 

Many healthcare protocols involve an X-ray scan for preliminary information gathering, 

allowing healthcare workers to determine the need for risking higher radiation exposure 

and expending more resources with additional imaging modalities. Although X-ray scans 

provide a clear view of bone structures, soft tissues are less defined. Machine learning 

methods have shown to be an effective way to extrapolate the two-dimensional 

information from X-rays into three-dimensional space, remedying the shortcomings of 

traditional X-rays while equipping professionals with additional information for making 

well informed decisions.  

We propose to improve upon past research by making a model capable of generating 

simulated CT scans from X-ray image inputs with high detail. In the recent work, 

“X2CT-GAN: Reconstructing CT from Biplanar X-Rays with Generative Adversarial 

Networks”, Ying et al. researched the simulation of CT scans from orthogonal X-ray 

views [1]. This paper’s approach included a Generative Adversarial Network (GAN) 

framework with a specialized generator. We hypothesize that using a larger dataset of CT 

exams and testing several network architectures will allow for improved reconstruction 

results. 

In this work, we develop deep-learning models for reconstructing CT scans from paired 

lateral and anterior-posterior X-rays to generate an accurate volume for structures in the 

chest region. These reconstructed CT scans may allow for the preliminary detection of 

medical abnormalities, enabling a patient’s care team to determine the need for additional 

resource-intensive imaging methods.  

2 Data  

The models in this study depend on two distinct datasets: the Rad-ChestCT dataset [2] 

and the CheXpert dataset [3]. The former dataset was obtained from the Center for 

Virtual Imaging Trials at Duke University and consists of 35,747 chest CT scans acquired 

from 19,661 adult patients. Access was granted to 10% of the data, comprising 3,630 

chest scans. This dataset was developed by Rachel Draelos, an MD/PhD student, with the 
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objective of facilitating machine learning models focused on CT scans. The CheXpert 

dataset is an open-source dataset that comprises of 224,316 chest radiographs taken from 

65,240 patients. For training the style transformation model, a total of 2,390 paired 

orthogonal X-rays were used. To be used as the ground truth in the reconstruction model, 

the CT images were normalized by scaling the volumes from -1000, 1000 HU to between 

0 and 1. Next, these volumes were resized to either 128×128×128 or 64×64×64 to be 

inputs for the reconstruction model. The dataset was split, with 80% partitioned for 

training and 20% for validation. Furthermore, 30 test images were extracted and used to 

compare models as shown in the Experiments Table (Table 1). 

3 Models 

Several experiments were performed using simulated X-ray images as the input for the 

reconstruction model, which takes a set of paired X-rays and yields a simulated CT 

volume. The creation of simulated X-rays required style transfer models – one for each 

X-ray view – which created paired data from the Rad-chest CT [2] and CheXpert [3] 

datasets.  

3.1 Style Transfer General Adversarial Network 

Obtaining paired data from the separate CheXpert and Rad-ChestCT datasets presented a 

challenge. Past research into a model capable of learning the mapping between two 

unpaired datasets resulted in CycleGAN [5]. We used CycleGAN as a style 

transformation model to obtain paired data for training. The style transformation model 

was trained on X-rays from the CheXpert dataset and mean CT scans that were originally 

a part of the Rad-ChestCT dataset. The style transformation model was employed to learn 

the style of a real X-ray that can then be transferred to mean CT scans in the process of 

generating paired data.  

The CT scans of the Rad-ChestCT dataset were averaged along the coronal and sagittal 

axis to obtain two-dimensional CT scans in both the anterior-posterior and lateral views. 

The mean CT scans were inputs to the style transfer general adversarial network which 

then stylized the mean CT scans to have a closer resemblance to real X-rays. This process 

resulted in paired simulated X-rays and CT scans that were used to train the 

reconstruction model in some experiments.  

Changes were made to the CycleGAN model to better process the style transformation 

that is required to go between mean CT scans and X-rays. The first major change 

included significantly decreasing the learning rate, as the level of the style transform 

amounted to a non-linear contrast transformation as opposed to transitioning between two 

different styles. This was paired with the use of an exponential moving average, which 

reset the weights to their moving average to increase the generalization of the model. 

This also allowed for finer level updates between epochs. 
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On top of these changes, the Nadam optimizer was used instead of Adam due to the 

better level of convergence that it achieved. The Nadam and Adam optimizers work 

similarly, except for incorporating Nesterov momentum which performs updates to the 

gradient based on the projected update, as opposed to the current value of each parameter. 

This allows for a lower level of overshooting once a local minimum has been found and 

has resulted in better styled X-rays than those obtained using pure Adam. 

Another change was made to increase the Lambda value to 20. The Lambda variable 

describes the cycle consistency loss which affects how accurate the style reconstruction is 

by comparing the original input when going both forward and backward through the 

CycleGAN training. This was originally set to 10 for most uses, but it was discovered 

that the pixel alignment improved the style transfer when using a higher value by testing 

different values. However, if the value was too high (greater than 25), the style transfer 

ended up becoming very weak and the differences between the input and output became 

insufficient. With a lambda of 20, a style transfer occurred that included significant X-ray 

characteristics (such as less contrast of different depth regions as compared to mean CT 

scans) while maintaining a similar shape to that of the original. 

 

Figure 1: Examples of real Patient Coronal and Sagittal View X-rays from the CheXpert 

Dataset, Mean Coronal and Sagittal View X-rays, and Stylized Coronal and Sagittal 

View X-rays 

3.2 Reconstruction Model 

The reconstruction model is responsible for the transformation of two orthogonal X-rays 

to a simulated CT volume. Our reconstruction model is inspired by the “X2CT-CNN+B” 
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reconstruction model proposed in the paper “X2CT-GAN: Reconstructing CT from 

Biplanar X-Rays with Generative Adversarial Networks” [1], comprised of two UNet 

encoder-decoder architectures for corresponding simulated X-ray inputs. Following the 

decoders, a fusion network with custom skip connections interweaved from the 

orthogonal decoder architectures iteratively extracts their convolved features into the 

yielded simulated CT volume. Modifications made to the initial “X2CT-CNN+B” 

reconstruction model – as well as associated result discussions – are compiled in “Section 

4: Experiments & Results”. Featured experimental adjustments ranged from architectural 

to hyperparameter changes. Contrasting previous work, the discussed reconstruction 

models were trained using paired images of real, as opposed to averaged, orthogonal X-

Ray images and associated CT scans in some experiments.  

Stemming from challenges faced regarding bit limitations of Keras Tensors (see 6.3) [7], 

the initial architecture (Figure 2) was modified from the “X2CT-CNN+B” for 128×128-

pixel images rather than 256×256-pixel images, resulting in significant memory savings 

due to CT labels consequently reduced to 128×128×128 voxel scans. The UNet 

architecture was chosen due to its ability to preserve features – via skip connections – 

from input images regardless of the convolutional changes that occur throughout the 

encoding portion of the network. This preservation through skip connections was 

important due to the emphasis on small details in medical-imaging applications.  
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Figure 22: Dense-512 Reconstruction Model with Model-Layer Legend 

3.3 Reconstruction Model Connections 

 

Figure 33: Architectural View of Connections 
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The connections that link the individual components of the reconstruction model are 

divided as Connection-A, Connection-B, Connection-C, and Connection-D. The 

placement of these connections within the overall architecture did not change across 

experiments; however, if the connection was altered, the internal definition was changed 

without changing the external I/O of each connection. This was done to maintain the 

capability of the overall structure while testing smaller model changes.  

Connection-A reshapes the input tensor to a uniform three-dimensional output regardless 

of the input dimensionality. Following the convention for tensors in Keras, this is 

represented by a five-dimensional tensor formatted in order of following index: batch 

size, rows, columns, depth, and channels. Further discussion about the final Connection-

A architecture is provided in section 4.3. 

Connection-B augments the skip connections of each UNet architecture present 

throughout the reconstruction model. Because the decoding portion of the UNet consists 

of five-dimensional tensors – but the skip connections from correlating encoding layers 

are four-dimensional – the skip connections must also account for transforming two-

dimensional image data to a three-dimensional representation to be concatenated with the 

decoded layers' outputs. The presence of Conv2D and Conv3D layers within the 

connection respectively match the number of channels and transform to an expanded 

five-dimensional tensor. 

Connection-C transposes the sagittal and coronal voxel representations such that the 

sagittal view is appropriately orthogonal to the correlating front-facing coronal voxel 

representation. The result of this permutation is then averaged to produce a coherent 

voxel representation for input into the decoder layers of the fusion network. 

Connection-D uses Connection-C yet accepts an additional input from the previous 

decoding layer of the fusion network to be concatenated with the averaged output of 

Connection-C. 

  



8 

 

4 Experiments & Results 

Below is a brief, tabular overview of the experiments discussed in this section. 

Model 

Name 

Input X-

ray 

Images 

Training 

Loss 

function 

Optimize

r 

Test 

Accuracy 

MSE 

(±0.001) 

Example Axial 

Image 

64-Dense Mean 

CT 

MSE Adam 0.0834 

 
64-Dense 

-Styled-

Inputs 

Stylized 

CT 

MSE Adam 0.0751 

 
512-

Dense 

Mean 

CT 

MSE Adam  

0.0819 

 
512-

Dense  

MAE 

Mean 

CT 

MAE Nadam 0.0970 

 
512- 

ProjInj 

Mean 

CT 

MAE Nadam 0.0980 

 
Table 1: Model names, input x-ray images, training loss function, optimizer, test 

accuracy, and example axial images. 

Note: In every experiment, the SELU activation function is used due to its self-

normalizing properties. This allows for a faster and more accurate level of training than 

using ReLU layers followed by batch normalization. 
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Figure 4: 3D Volume Renderings of predictions (64-Dense-Styled-Inputs [Left], 512-

ProjInj [Right]). Features including the lungs and spine can be seen. All models failed to 

synthesize dense bones, as shown by the lack of ribs.   

 

 

4.1 Input X-Ray Dimensions 

Several experiments were performed with various input dimensions (not included in 

experiment table). An analysis was performed on image pixel sizes of 128×128 and 

64×64 – outputs were kept at similar dimensionality matching the input dimension height 

and length.  

The 256×256 input images were unable to train due to TensorFlow’s tensor size limit 

(Section 5.2). The 128×128 with a “64-Dense” architecture produced results comparable 

to “X2CT-CNN+B” [1]. Additional experiments were performed with a 64×64 input, 

further decreasing the required memory and training time for the stylized CheXpert 

dataset; however, the decreased amount of encoding/decoding layers resulted in 

significant artifacts for predicted CT-Scans due to the lack of model structure to 

recognize specific features. Furthermore, the reduced resolution of the input X-rays 

restricts the amount of data the model must recognize to identify key features and 

patterns from the mean CT scans. 

4.2 Training Loss Function & Optimizer 

Initial experiments with choice of training loss function and optimizer followed 

guidelines set by existing work [1]; these guidelines are Mean-Squared Error Loss and 

Adam Adaptive Optimizer [9]. Results with these guidelines produced CT scans with 

noise surrounding key X-Ray features: lungs, spine, and rib cage. 

While noisy output may indicate a deep-learning model deficiency in adequate capacity 

for the application, variations around key features may indicate an inappropriate loss 

function. Mean-Squared Error as the training loss function lacks spatial awareness – a 
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key factor in outputting noise-minimized CT scans. This resulted in multiple experiments 

with varying loss functions, resulting in Mean Absolute Error (MAE) being identified as 

the best candidate for effectively reducing the blurriness of the output CT scan data. 

While usage of MAE as a loss function reduces the precision of output features, this 

model is intended to be used for preliminary imaging purposes rather than full medical 

diagnoses. 

Learning-rate optimization was initially performed with Adaptive Moment Estimation 

(Adam) to use the low memory requirements and capability to effectively optimize the 

training process of a large dataset [9]. However, Adam has significant difficulties 

escaping local minima whereas Nadam incorporates Nesterov-Accelerated momentum to 

minimize these convergence issues. Nadam often produces models with better 

generalization capabilities in less training time [10]. Experiments with Nadam as the 

optimizer, along with the benefits of MAE as the associated training loss function 

produced the clearest results throughout the reconstruction model experiments.  

Ultimately, MAE and Nadam were chosen due to reduced blurriness within the CT scan 

output. However, this decreased blurriness does not mean the CT scan is less accurate 

due to the inherent quality of MAE and Nadam that tend to perform very similarly to the 

more commonly used MSE and Adam in other scenarios [10]. The MAE loss function 

allowed for predicting model losses linearly as opposed to squaring the error and treating 

each degree of error with the same amount of importance. Using Nadam allowed for the 

use of Nesterov acceleration with Adam, which updated the momentum weights in 

response to the future location as opposed to the current location (potentially preventing 

overshooting in local minima). 

4.3 Connection-A Architecture 

The first two experiments involved differing Connection-A architectures involving the 

number of dense-layer neurons at the apex of both the sagittal and coronal UNet 

architectures. “64-Dense” and “512-Dense” distinguish these experiments as the number 

of neurons within the dense block. Minimal visual and quantitative differences were 

detected between these changes; however, “512-Dense” produced CT-Scans more aware 

of features outside the immediate intrathoracic cavity such as shoulder blades and upper 

and lower vertebrae. 

4.4 Back Projection Injection 

Back projection injection is the largest architectural change to the previous alterations of 

“X2CT-CNN+B” mentioned above. This novel approach includes a simplified version of 

back projection with the orthogonal X-ray images. It produces CT scans with increased 

visibility of granular yet key features such as the vertebrae. This approach was considered 

because back projection is the result of a calculation, preserving spatial data, rather than 
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requiring additional data collection and is similar to conventional CT reconstruction 

methods.  

5 Challenges  

5.1 Memory Limitations of Single-GPU Training 

During the creation of the reconstruction model outlined in (Figure 2), we came to the 

realization that the quantity of layers used in combination with the image size were 

consuming a lot of memory during run-time. The biggest cause of our memory was the 

final size of our output: 128×128×128 pixels. Many of the intermittent models tried to 

use high pixel inputs and outputs to increase accuracy of the result but failed due to 

reaching the memory limit. This restricted the maximum quality of the outputs produced. 

The final reconstruction model consumed around 25 GiB of memory and the Projection 

Injection consumed around 32 GiB of memory. 

5.2 TensorFlow’s Max Limit on Parameters 

Another issue encountered during testing of model architectures was the TensorFlow 

library limitation on max parameters in a layer. TensorFlow limits its parameters per 

layer at 232 parameters. This also contributed to our max possible output size being 

128×128×128 pixels, again restricting the max quality of our results. We ended up 

working within Keras’ layer constraint, but future work could look at solving this 

problem, potentially with PyTorch (Section 6.1) to create more detailed results. 

6 Future Work 

6.1 Switch to PyTorch to Solve Max Parameters Constraint 

As mentioned in the Challenges, TensorFlow’s Keras library has a limited number of 

parameters allowed per layer. This resulted in our reconstruction model being limited to 

an output of 128×128×128 for the simulated CT scan. To achieve more defined simulated 

CT scans, the model output layer needs more parameters. The best alternative we 

identified was switching to PyTorch’s libraries [10], which would require a large code 

change. 

6.2 Transformer Architecture 

Currently, all models tested directly input the coronal and sagittal X-Ray images into the 

reconstruction model’s encoders, as shown in (Figure 2). However, past research [6] has 

shown that a multi-headed attention layer before the encoder could lead to increased 

quality in the final picture.  
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6.3 Multi-GPU Training 

The implementation of the reconstruction model uses a single GPU to train. However, 

this was relatively slow, limiting the number of epochs that models could train for. Using 

multiple GPUs may reduce training time and allow for the model to get better results by 

training across more epochs. 

6.4 Use Medical Label AI to Test Accuracy of Output 

Other research [3] has attempted to label CT scans from the Rad-ChestCT data set. To 

verify the validity of the output from the models, it could be beneficial to match labels 

found in both the Rad-ChestCT and CheXpert datasets and then train the model on the 

Rad-ChestCT data and verify the accuracy using CheXpert as the validation set. This 

would ensure that the model is reconstructing the CT scans properly instead of losing 

information in the process. 

6.5 Train on Larger-scale X-Ray Images 

To speed up training times and reduce run-time memory consumption, it was necessary to 

reduce the input X-Rays to 128×128. However, this traded the maximum quality of the 

resulting CT scans. To improve the reconstruction model, scaling up the input images to 

at least 256×256 or potentially higher may be useful. This will increase the train time and 

memory consumption, but with other future directions mentioned above, these effects 

could be reduced. 

6.6 Partner with Medical Experts to Evaluate Usability 

In the future, it would be beneficial to validate this model with medical experts to 

determine its relevance in clinical settings. Experts could also identify areas of 

improvement, identifying possible future research directions. 

7 Conclusion 

This work explores various techniques to reconstruct CT scans from paired orthogonal X-

rays. Usage of the reconstruction model was primarily used to facilitate the generation of 

simulated CT volumes, along with several experiments performed using simulated X-ray 

images created by the style transformer model. While the stylized model (table 1, row 2) 

has the best mean squared error value, we consider the back projection model (table 1, 

row 5) to provide more accurate results for granular features within the final CT scan 

compared to other models that were experimented with. We hope to further our research 

by using multiple GPUs, adding attention to our reconstruction model, improving input 

X-Ray image size, and look at evaluating our model, both by using CT labeling models 

as well as receiving feedback from medical experts. With further research, we hope to 

create a model that clinicians can use to improve the diagnostic process. 
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