
Constructing a UX Testing Platform using
Embedded Computing Systems

Ariana Beeby Erik Steinmetz
Department of Math, Statistics, and Computer Science

Augsburg University
2211 Riverside Ave, Minneapolis, MN 55454

{beebya|steinmee}@augsburg.edu

Abstract

In this work we demonstrate how to create a platform for UI/UX experiments based
on a Raspberry Pi computer configured with a touchscreen display.

User interface studies are often conducted by personal observation of a user en-
gaging with a piece of software. Many kinds of experiments can be conducted without
the need for human oversight at the time of the experiment. This work is intended to
build a device to monitor user interactions in an unsupervised kiosk mode, providing
a platform for these kinds of experiments.

The work presented in this paper explains the hardware configuration and software
stack used to set up the kiosk. We present a detailed look at the software design, in-
cluding which programs were chosen along with the configuration settings necessary
for the software and hardware components to combine and create a versatile experi-
mentation platform.

1 Introduction
The goal is to set up the Raspberry Pi as a kiosk allowing users unsupervised interactions
with the computer in a controlled and limited environment. This environment enables
UI/UX experiments to be conducted such as observing First Click placement and length
of engagement. To allow entirely unsupervised user interactions, the machine will run
software which automatically records and documents desired user events. It will also have a
“default” display mode to which it returns after a set amount of time, reducing the effects of
a previous user’s interactions on future engagements. This eliminates the need for a human
observer of the user, whose presence may interfere with the natural flow of the subject’s
interaction with the software. A machine may also be able to offer a more accurate and
consistent record of the interactions than a human observer.

2 Background
User interface and experience testing can be broken down into a number of unique tests that
focus on individual elements necessary for the user experience, including both performance
and quality-focused tests. Some examples include task completion, clickstream analysis,
and First Click testing [1][2]. With some of these tests, a moderator is required to have
direct interaction with participants as they are guided through each task, requiring more
time and resources to be put towards testing. The presence of a moderator could also have
a undesired effect on the outcome of each test as well. Other tests only require observation
of the participants and their interactions with the software. For First Click testing, the
participant’s first interaction with a given situation is recorded, with a desired outcome on
the tester’s part. This results in the tracking of correct and incorrect interactions based off
the first click [1][2].

3 Development Process and Architecture
The software created for the kiosk setup of the Raspberry Pi is based on a tutorial guide
outlined on the official Raspberry Pi website [3]. A bash script is created that blocks aspects
of the desktop environment and cursor allowing for a clean display – kiosk mode – and
opens a specified website on the Chromium browser. In order to run the data collection
software created specifically for this kiosk, a command was added to the script which opens
and runs a python script in the background. Completing the setup a service file is created
that ensures the device will boot automatically in its kiosk mode by executing the bash
script on power-up.

The focus of the data collection in the system described in this paper is purely to get the
locations and times of the interactions with the kiosk system. Unlike First Click testing,
data collection will continue after the first interaction, allowing for analysis of the overall
experience, including engagement time.

For the creation of the data collection software, a library that could monitor input events
from the screen on the site was required. A number of libraries were explored, including

1

xdotool, a shell command that is used in the kiosk bash script. When initially implemented,
xdotool’s tracking of the mouse-click behavior did not detect any touches, but the mouse-
enter behavior would detect when the cursor would briefly appear on screen on touch. This
resulted in the logging of two duplicate events, as the appearing and disappearing of the
cursor on touch counted as separate mouse-enter behaviors.

Ultimately, the Pynput [4] and logging Python libraries were utilized. Pynput is a high-
level library that allows for the simulation and monitoring of keyboard and mouse events.
Though not extensive in its functionality, pynput fits the needs of the data-collection this
device requires, and has streamlined usability. Similar to xdotool’s mouse-click behavior,
pynput’s click detection does not read a touch on the screen as a click. However, as the
cursor only appears on touch, the event is detected as a movement of the mouse. Unlike
xdotool, a touch event is only detected once and at the moment the initial contact is made,
or the cursor is first moved. This eliminates the logging of redundant information. The
Python logging library was used to record these events and the specific time of the events
to a logging file. This file can be written and read while the monitoring program is active,
allowing the device to remain in kiosk mode while observations are being made.

Raspberry Pi
Hardware

FlightRadar24
Website

Chromium
Browser

Raspberry Pi OS

Python

pynput
library

Touch Monitoring
Script

logging
library

Touch
screen

Figure 1: The Hardware-Software Stack

The overall architecture of the system is shown in Figure 1, including the Raspberry Pi
hardware and the various software components as outlined above.

The current version of the kiosk runs on a seven inch touchscreen with the computer
mounted on the back, so it can act as a portable experimentation system. This setup is seen
in Figure 2.

4 Results
When powered up, the kiosk boots and after about thirty seconds ends up in its default
state, showing the flightradar24.com website that the user should interact with, as
shown in Figure 3.

2

Figure 2: Kiosk Hardware with Touchscreen and Computer

Figure 3: Flight Radar Screenshot

As the user interacts with the kiosk, each of their taps is recorded in a log for exam-
ination and analysis at a later time by the user interaction experimenter. The log tracks
the time of the tap, as well as the location on the screen using the corresponding x and y
coordinates. An example log file is shown in Figure 4.

The user can customize the kiosk.sh file to specify the desired site to start the kiosk
in. They can also specify in the Python script the file path and desired name for their log.
For the user’s experimentation, the device can be left in a location where participants can
interact with the kiosk. Each interaction, or touch, will be logged in the file, which can be
accessed remotely by the user through an ssh connection with the device. As changes are
made to the site for each test, or different sites are specified in kiosk.sh, all that is required
of the user is to stop and restart kiosk.service, or restart the device,and specify a separate
file in data-collection script to track the new interactions.

3

2023 −03 −17 1 4 : 2 7 : 1 4 , 1 0 8 move t o (5 3 9 , 248)
2023 −03 −17 1 4 : 2 7 : 1 5 , 1 1 8 move t o (5 1 2 , 245)
2023 −03 −17 1 4 : 2 7 : 1 6 , 2 1 6 move t o (5 7 1 , 229)
2023 −03 −17 1 4 : 2 8 : 1 3 , 6 1 7 move t o (5 8 8 , 304)
2023 −03 −17 1 4 : 2 8 : 1 4 , 5 4 5 move t o (6 0 0 , 309)
2023 −03 −17 1 4 : 2 8 : 1 5 , 5 0 5 move t o (5 6 5 , 362)
2023 −03 −17 1 4 : 2 8 : 1 6 , 4 8 9 move t o (5 5 4 , 432)
2023 −03 −17 1 4 : 2 8 : 1 7 , 4 2 5 move t o (5 9 0 , 354)
2023 −03 −17 1 4 : 2 8 : 1 8 , 8 6 9 move t o (6 0 2 , 313)
2023 −03 −17 1 4 : 2 8 : 1 9 , 4 1 7 move t o (5 7 3 , 355)

Figure 4: Sample Log Entries

5 Conclusions and Future Work
This first build is a success as it creates a clean kiosk display on a Raspberry Pi device, and
monitors and records touch events on the device while in the kiosk mode. However, the
touch event data is rudimentary, only recording the x and y coordinates of the touch. This
data requires more work on the researches part to mirror the coordinates over the website
display in order to see what elements were interacted with. It also does not account for
touches that would result in the leaving of the page, which could result in data that is not
applicable to the desired testing.

In order to more accurately monitor events, future versions of this kiosk will continue to
use the Raspberry Pi, but attached to a larger screen. The data-collection software will also
be expanded upon, allowing for finer-grained control. In order to expand the software, the
exploration of a different, lower-level recording and monitoring library will be required.

4

References
[1] BAILEY, R. W., WOLFSON, C. A., NALL, J., AND KOYANI, S. Performance-based

usability testing: Metrics that have the greatest impact for improving a system’s usabil-
ity. In Human Centered Design (Berlin, Heidelberg, 2009), M. Kurosu, Ed., Springer
Berlin Heidelberg, pp. 3–12.

[2] DUMAS, J. S., AND FOX, J. E. Usability testing. In The Human-Computer Interaction
Handbook, Third Edition. CRC Press, 2012, pp. 1222–1241.

[3] FOUNDATION, R. P. How to use a raspberry pi in kiosk
mode. https://www.raspberrypi.com/tutorials/
how-to-use-a-raspberry-pi-in-kiosk-mode/. Accessed in March
2023.

[4] PALMER, M. pynput 1.7.6 library. https://pypi.org/project/pynput/,
2022. Accessed in March 2023.

5

