
Teaching Software Testing: Lessons Learned

Janet Drake
University of Northern Iowa
Cedar Falls, IA 50613-0507

Phone (319) 273-5811
Email drake@cs.uni.edu

Abstract

Software testing is an important and costly part of the software development life cycle.
More than 50% of software development budgets are used in validation and verification.
This leads to the question -- How much testing do we teach in our computer science
curriculum? Over the past five years I have incorporating software testing into my
courses at the University of Northern Iowa by: 1) introducing testing concepts in
Introduction to Computing, (2) having a 2-week testing section in Software Engineering,
3) and offering a new testing course, Software Testing. This paper describes the benefits
and lessons learned in each course. In addition, the author describes her learning
experience as a software tester during a summer internship at Rockwell Collins.

Software testing is an important, challenging, and exciting discipline. It is not just a
matter of pounding on the keyboard and trying to crash the system. Testing is a highly
organized, well designed, and very expensive effort with the goal of ensuring some
degree of correctness.

In June of 2002 the National Institute of Standards and Technology released a study
[Newman] stating that software failures cost the US economy an estimated $59.5 billion
per year. That is 0.6% of the gross domestic product. This points out that we are not
testing our software products well. In addition, the report stated that 50% of software
development costs are spent on the validation and verification efforts and, on safety-
critical software, 66%+ of the cost is spent on validation and verification. As instructors
in computer science departments we are preparing people to develop software. If testing
is 50% of the effort, we are not properly preparing our students if we do not include
software testing in the curriculum.

I have been interested in adding software testing to our curriculum for the past 5 years
and have tried several different approaches. In this paper I will describe the 3 different
experiences in teaching software testing and their benefits and limitations. The courses in
which I have taught testing are:

• Introduction to Computing -- first semester CS students
• Software Engineering -- junior and senior CS students
• Software Testing -- senior and graduate CS students

1. Software Testing in the Introduction to Computing Course

Introduction to Computing was a traditional introductory course taught using Ada where
students learned sequence, selection, and loop constructs along with subprograms, arrays,
records, files, and exception handlers. They completed 13 programming assignments over
the semester. Software testing concepts were introduced in the middle of the semester.
Equivalence class, boundary value, and error guessing techniques were introduced.
Testing exercises were added to 3 of the programming assignments. Students turned in
test cases and test results along with their assignments.

1.2 Benefits

Students examined their own work. As everyone who has taught a beginning
programming course knows, students are often happy to just get output. They will not
even read the output. This was made clear to me when I had an assignment that
calculated gas mileage for a car. Some cars were magic and got over 30,000 miles per
gallon. After the testing exercises students understood that they had to look at their output
and that many mistakes exist even after the compiler has accepted their code.

Students retain a general idea of how to select good data for their programs. I believe
that students are left with an intuitive idea of testing that leads them to pick boundary
values for testing. I have seen these students again in the Software Engineering course
and the boundary value concept is not new for them.

1.2 Limitations

This testing experience is very limited. Students just get a taste of software testing, but, at
this early in their educations, this is about all they can absorb.

Introductory textbooks do little with testing. It is up to the instructor to create lectures,
examples, and assignments that cover testing concepts.

For every concept added to a course, another is dropped. There is only so much time in a
course. By adding 3 new testing concepts, I used time that could have been spent
introducing other concepts. I believe that the time was well spent in introducing testing
concepts.

2. Software Testing in the Software Engineering Course

A 2-week section of software testing has always been included in my Software
Engineering course. The course introduces the software development life cycle models,
analysis, design, testing, teamwork, documentation, CASE tools, software quality, and
software metrics. Implementation is not covered because the students are well versed in
low-level design and implementation before the Software Engineering course.

White box and black box testing are taught. In white box testing (also called unit testing
or structural testing) we are testing the code with the purpose of executing all of the code
-- code coverage. We develop a flow graph, and, from the graph, identify paths and write
test cases. Our approach results in multi-condition coverage. Students do an exercise
where they make a graph, find paths, write test cases, and run the tests.

In black box testing (also called functional testing) equivalence class and boundary value
testing are introduced. I use readings from [Myers] and [Beizer]. The students use these
testing techniques as the starting point on a maintenance project. In this project, they find
faults, and propose fixes for the faults and improvements in the program. Finally they
implement their proposals.

Note on textbooks and teaching software testing. General software engineering books
such as [Pressman] tend to describe what is easy to teach rather than what is useful and
successful in software testing.

Method % Faults in programs [Davis] Book coverage in pages [Pressman]
Inspection 65% 4

Black Box 15% 10
White Box 10% 15

The reason the textbook coverage does not match the success of the techniques come
from the degree of "algorithm" that can be used to teach the subject. White box testing
has a nice, clear algorithmic approach. Black box testing has some strait-forward
approaches (and some very complex that are out of the scope of general software
engineering texts). Inspection is a social approach to finding faults and involves a team of
people applying their brain to product. This is not algorithmic and, therefore, not easy to
teach.

2.2 Benefits

Students get a testing experience. They create test cases, run tests, make fault reports, and
deliver the resulting documentation.

2.3 Limitations

Students do not spend enough time on testing. Although it is a testing experience, it is
overshadowed by the other parts of the project -- analysis, design, and implementation.

Students find software development tools difficult to use. In the Software Engineering
course, students use a CASE tool, Visible Analyst Workbench made by Visible Systems
Corporation. Although this is a fairly easy to use CASE tool, the students find it difficult.
If students are going to do real testing, they will be faced with many more difficult tools.

 3. Software Testing Course

The 15-week Software Testing course is a project course. Students focus on a major
project rather than a series of small assignments. In this class, besides a major project, the
students learn testing techniques. Software Engineering is a prerequisite for this course
but we cover white box testing again. We use the same approach to white box testing but
this time we look at problems with multiple procedures. I expect mastery of the
technique.

In black box testing we cover equivalence class, boundary value, and graph based
approaches to testing. The graph-based approaches are difficult. Based on the
requirements we build graphs that allow us to see and test the paths through the
application. We build tests to cover these paths. The graph approaches we cover are:

• Control Flow Testing
• Data Flow Testing
• Transaction Testing

• Finite State Testing
• State Transition Testing

Figure 1 -- Software Testing Model

To ensure a reasonable level of testing, the tester must use a variety of testing techniques
(see figure 1). For requirements testing it is recommended that a graph base approach be
selected. Boundary value and equivalence class testing should always be done. Code
coverage insures that all the code has been executed and that no dead code exists in the
program.

Equivalence class testing concentrates on inputs. Boundary value testing examines both
input and output data values. Graph testing considers the interactions between elements
within the program. Together these approaches give a reasonable degree of testing.

Our Software Testing Laboratory is well equipped. We have 5 PCs and a printer. They
are not connected to the network for security reasons. Rockwell Collins donated the
hardware and the time to install the system. Rational Technologies donated 5 software
tools: Rational RequisitePro, Rational ClearCase, Rational ClearQuest, APEX, and
Rational Test RealTime. In addition, both Rockwell and Rational have given training
sessions to the software testing students.

The material we tested also came from Rockwell and Rational. In the first semester we
tested Ada.String -- the strings package for the APEX Ada complier. In the second
semester, we tested Rockwell support tools that were built at Rockwell. In addition, we
tested a web site, Elementary Citizenship, made by the UNI College of Education for
continuing education of practicing teachers. I believe that students have a better
experience when they work with software that is or will be used.

3.1 Benefits

Graph based testing

Boundary value testing

Equivalence class testing

Code coverage

Testing to requirements

Testing to code

Student use a professional testing environment, work on real software, and write real
documentation. This course provides an experience that is close to working in a high-end
software development environment.

Students see the full scope of the testing effort. They see the creativity and rigor needed to
create tests. They see the issues involved in creating an adequate set of tests. They see the
documentation effort.

3.2 Lessons Learned

Students must be advanced in their studies to use the testing environment and understand
the problems being tested. As previously mentioned, software engineering students have
difficulties with a moderately simple CASE tool. The testing environment is more
complex and requires that students have at least mastered CASE tools. The code we
tested required understanding computer science concepts.

Creating equivalence class and boundary value test cases require creativity. Theese
testing approaches are theoretically simple but good implementation requires creative
thinking. A good tester sees equivalence classes that a normal human will miss.

Graph techniques are difficult. Starting with a requirements specification and creating a
graphic model suitable to testing is difficult. The 5 different graphs that we examine are
not easy to master.

A single project cannot give students experience with all aspects of testing. When the
class tested Ada.Strings, they did not face issues such as configuration, compatibility,
foreign language, or usability testing. In the second semester a web based project was
added so that students could have a wider testing experience.

4. The Teacher's Education

In the summer of 2002, I worked at Rockwell Collins as a software tester. I had
encouraged the addition of a software testing course to our curriculum and the course was
to be offered for the first time in the Fall of 2002. Although I had worked in industry as a
developer, I had never worked as a tester. I realized that the job of testing software was
more complex than the textbooks indicate. Even in the 1980s when I worked in industry,
fully a third of the staff were testers. I was fortunate that Rockwell allowed me to work as
a tester so that I could get first-hand knowledge of the complexity of the testing problem.

I worked testing a digital communication package for the KC135 aircraft. The purpose of
the digital link between the aircraft and ground stations is to reduce the cockpit crew's
radio time. There are many aircraft status reports that can be automatically
communicated. I started by running tests. The test engineers had written these tests.

Sometime test engineers choose to write code to execute tests and sometimes they elect to
run them by hand. The approach depends upon the number of times the tests will be run.

Through running tests I learned about the application and the testing environment. The
testing environment was quite complex. It included documents: specification, test case
documents, and fault reports. The specification and test case documents were under
configuration control. Each requirement and test case was numbered and traceability was
maintained between the requirements and test cases. We used Rational RequsitePro for
requirements management and traceability. We ran tests using a simulation tool that
simulated both ground communication and aircraft systems for the digital
communications software. The simulator was quite a remarkable and complex tool.

After about a month of running tests, I was able to write tests. In addition, I modified
existing tests, wrote fault reports, and took part in the Configuration Control Board
meetings.

4.1 Lessons Learned

Requirements are the keystone to software development. I always knew this from my
experience as a developer. But as a tester, the requirements are just as important.
Functional tests are written to verify that the code meets the requirements. If there are no
requirements, there is nothing to verify.

Testers need clear and exact requirements to write a test. We cannot even write a
boundary value test for valid data entry if that field is not properly specified. I believe all
those who write requirements should start as testers. Once they have had to use
requirements to write tests, they know the qualities of a good requirement -- it must be
testable!

The tester finds errors in the specification. Even though the specifications were well
written and used often, they still contained faults. The faults were mainly in the low-level
details, but there were still faults and needed to be identified and fixed.

Creating test cases is very creative work. We all know that we cannot exhaustively test.
There is not time or money in a project to test every possible input value. The tester's job
is to pick a reasonable set of test cases that cover the requirements. This takes a high
degree of understanding of testing and the domain. A talented and experienced tester can
write a reasonably small set of tests that will uncover many faults. A less talented tester
can produce lots of test cases -- many more test cases -- but they will uncover fewer
faults.

Testers' creativity is not as easily seen as developers' creativity. Developers make code
and execute programs. We can see talent, creativity, and other good features by simply
looking at the code or the executing program. Testers make test cases. It is very difficult
to read test cases and see excellence. We cannot see the effort that went into designing

test cases. I believe that testers are under-appreciated because their creativity not readily
visible.

Testers know the domain. Testers see the full application and develop a broad view of the
problem. I believe that all people new to a domain should start by running tests. They get
to see the whole application and get a feeling for the problem domain.

Lots of things can be at fault. When a tester finds a fault, it is not automatically a
software fault. Faults can come from:

• Software
• Test case
• Requirement
• Test environment
• Interpretation of results

It is our goal to find the software and requirements faults, and, when we find them we are
successful. Just like a developer, we make mistakes when we write our test cases but we
don't have a compiler to find them. We find them by inspection and by using them. In
addition, when using a complex testing environment, the environment may cause
problems. Finally, interpreting results is difficult. What output should we really expect?
Determining expected values is one of the most difficult tasks of the tester.

As a tester, I wanted to only valid write fault reports. I don’t want to write fault reports
where I later find out that I'm at fault. Just like every other part of software development,
testing keeps one humble.

Fault tracking through the Configuration Control Board (CCB) is complex. In order to
fix a fault, the fault report goes to the CCB and they decide how, where, when, and if the
fault will be fixed. It is a complex and labor-intensive operation. At least 4 people had to
touch every fault between finding and fixing. The process is necessary to maintain the
consistency of the product. When the product is close to delivery, the CCB process
becomes intense and the tester is at the center of the process. In my experience, the
fastest fault finding to fix cycle is a week.

A good team is important. My team at Rockwell was excellent. The team was centered on
the product and the most important thing to each team member was to make the best
quality product possible. In my previous experience I also had good teams but our focus
differed. I was on a development team and my team's focus was development not the
total product. People finding faults in our product were not thanked. I believe that the
product centered team approach is more productive and more rewarding for the team
members -- especially the testers.

4.2 Benefits

Software Testing Laboratory. Rockwell Collins and Rational have helped me create the
Software Testing Laboratory. Rockwell donated 5 computers and a printer. They installed
and help us maintain the system. Rational donated software for the software testing
environment. The software includes:

• Rational RequisitePro -- requirements management and tractability tool
• Rational ClearCase -- configuration management tool
• Rational ClearQuest -- fault management database
• Rational Test RealTime -- testing environment
• APEX -- development environment

Both Rockwell and Rational people have given tutorials in the Software Testing course
and they also help maintain our complex, integrated environment.

Continuing relationship with industry. I am fortunate to have an on-going relationship
with Rockwell Collins. Several mentors at Rockwell are very supportive. My classes
have visited the Rockwell test facilities and seen demonstrations of extensive testing
environments. Rockwell's involvement brings the course closer to a work experience.

5. Future Goals in Software Testing

I would like the Software Testing course and laboratory to maintain on-going software
testing projects. I would like students to learn testing the same way I did. I would like
them to be able to run tests on their first day of class. They would see good test cases and
a working environment. They would learn to create test cases later in the semester, but
they would have started by seeing and using good test cases.

Currently the students must learn the environment, set up the specification, write their
test cases, and finally they get to run the tests. Domain knowledge is also a problem.
They have to understand the problem by reading the specification rather than by
executing test cases.

6. Conclusion

Software testing is expensive. It takes at least 50% of the software development budget
and we generally ignore software testing in our computer science programs. It's one of
those things that we "hope" is taught in every course but ends up not being taught
anywhere. I believe that we can affect the quality of software by teaching our students the
principals and importance of software testing.

I believe some testing should be taught early and we should require our students to use
those testing techniques in all their courses. I also believe that learning testing requires a

mature student and complex software environment. Therefore a senior level software
testing course is appropriate.

I was fortunate to have an internship from Rockwell Collins where I learned more about
testing. In addition, Rockwell and Rational helped me equip a testing laboratory and
continue to support my teaching effort.

Many of our students will start their career in software testing. If they are prepared to test,
our students will be successful and be good representatives for their universities.

References

[Newman] Newman, Micheal, "Software Errors Cost U.S. Economy $59.5 Billion
Annually," NIST Assesses Technical Needs of Industry to Improve Software-Testing,
June 28, 2002, http://www.nist.gov/public_affairs/releases/n02-10.htm

[Myers] Myers, Glenford, The Art of Software Testing, Wiley, New York, 1979

[Beizer] Beizer, Boris, Black-Box Testing: techniques for Functional Testing of Software
and Systems, Wiley, New York, 1995

[Pressman] Pressman, Rodger, Software Engineering: A Practitioner's Approach, Fifth
Edition, McGraw Hill, New York, 2001

[Davis] Davis, Allan, Software Requirements: Objects, Functions, & States, Revision,
Prentice Hall, Upper Saddle River, New Jersey, 1993

Acknowledgements

Thanks to Rockwell Collins and Redge Bartholomew in Cedar Rapids, Iowa for their
support of our software testing efforts.

Thanks to Rational Software and Joel Pech for their support and software.

