
USING JAVA AND JDBC IN AN INTRODUCTORY 
DATABASE COURSE 

 
 

Thomas B. Gendreau 
Computer Science Department 

University of Wisconsin - La Crosse 
gendreau@csfac.uwlax.edu 

 
 
Abstract 
 
JDBC is one of the standard packages available with Java. It provides classes and 
interfaces that allow application program/database interaction with a high degree of 
database vendor independence. The features of JDBC enable an application program to 
connect to remote databases, execute SQL queries or stored procedures on the remote 
database, and process the results of queries a row at a time. The SQL statements are 
represented as strings in the Java program. A string representing a SQL expression can be 
hardcoded into the program or built during execution based on user input. JDBC also 
includes features that allow the program to query the database to determine metadata 
such as the names and structure of tables in the database. Access to metadata objects 
allows very flexible application programs to be created. This paper gives an overview of 
the features of JDBC and discusses its use in an introductory database course.  
 



 

Introduction 
 
At the University of Wisconsin - La Crosse CS 364:Introduction to Database 
Management Systems is the first course in database systems offered to computer science 
and information systems majors. The course includes traditional topics such as writing 
SQL queries, ER modeling, and normalization. Three years ago a client/server database 
programming component was added to the course. In this part of the course, students are 
taught database application  programming using features of Java and JDBC. This paper 
gives an overview of the features of JDBC that have been used in CS 364 and discusses 
some projects that have been used in CS 364. 
 
 
JDBC Basics 
 
There following code segment uses many of the basic features of JDBC.  The code 
segment connects to the database and outputs the contents of the Author table to standard 
output. (Assignments used in CS 364 always use GUIs but in order to focus on the JDBC 
features in this paper we use code segments with simpler user interfaces) 
 

Connection con; 
Statement stmt; 
ResultSet rs; 
try { 

             DriverManager.registerDriver( new oracle.jdbc.driver.OracleDriver()); 
con = DriverManager.getConnection( 

"jdbc:oracle:thin:@cs364.intra.uwlax.edu:1521:cs364",  
"login", "password");  

 
stmt = con.createStatement();  

 
  rs = stmt.executeQuery("select * from Author"); 
  while (rs.next()) 
  { 
                      System.out.println(rs.getString(1) + " " + rs.getString(2)); 
  } 
  stmt.close();    

} 
 

catch (SQLException e) 
{ 

  //code not shown 
} 

 
Before any interaction between the client program and the database server can happen, 
the client program must create a connection to the server. To make the connection, an 
appropriate driver must be loaded and a call to DriverManager.getConnection must be 



 

made. The drivers are database server dependent. The above code works for an Oracle 8 
server. A MySQL server was used the first year JDBC was used in CS 364. The 
following code segment was used to make a connection to that server. 
 
 Class.forName("org.gjt.mm.mysql.Driver"); 
 con =DriverManager.get Connection 

    ("jdbc:mysql://nabokov.cslab.uwlax.edu:3306/Libraries", 
        "login","password"); 

 
The format of the url string passed to the driver varies by driver and database server. In 
general the url provides a reference to the machine on which the server runs, a port 
number to connect to (sometimes implicit), and a database instance name. More 
information on drivers can be found in [1] and at java.sun.com.  
 
Before a program executes an SQL expression some type of statement object must be 
created. The simplest statement class is Statement. The above code creates a Statement 
object referenced by the name stmt. The methods executeQuery and executeUpdate can 
be invoked on a Statement object. executeQuery is used to execute an SQL select 
statement. The parameter to executeQuery is a string that should be a syntactically correct 
SQL expression. The SQL strings can be hardcoded, as in the above example, but more 
frequently the strings are built during execution based on user input. For example, a user 
interface could be built that lets a user choose tables, attributes and conditions (think of 
how simple queries can be built in Access) and based on the user's choices an SQL string 
is built for the query. (In CS 364 programming assignments students frequently make use 
of the StringBuffer class to incrementally build the SQL expressions). It is important to 
realize that Java does not recognize SQL. If an SQL string has syntax errors, this fact will 
be recognized by the server at runtime and an SQLException will be raised by the 
program. 
 
A call to executeQuery returns a ResultsSet. Through the ResultSet the program can 
access the rows returned from the select statement. In order to access the rows (including 
the first row) the method next must be invoked on the ResultSet object. The next method 
returns true as long as another row is available. To access attributes from the current row, 
methods such as getString or getInt can be invoked on the ResultSet. Attributes can be 
referenced by position, as in the above code, or by name. For example, the call 
rs.getString(2) could have been replaced by the call rs.getString("authname"). 
 
 
Other Types of Statements 
 
There are two other types of statement classes: PreparedStatements and 
CallableStatements. PreparedStatements are used to create SQL expression templates that 
can be parameterized. For example the following PreparedStatement can be used to find 
the titles of books written by a particular author. The author's name used in the query is 
not given until the setString method is called. 
 



 

 PreparedStatement ps = con.preparedStatement 
    ("select B.title from Book B, Author A where B.aid = A.aid and" + 

 "A.authname = ?"); 
 ps.setString(1,"Smith"); 
 ResultSet rs = ps.executeQuery(); 
 
Note, associated with each PreparedStatement is a particular SQL expression, so a string 
is not passed to the executeQuery method. Before the executeQuery is called, values must 
be given to each of the parameters. The above query has only one parameter but queries 
can have many parameters. Each parameter is represented by a "?". Parameters are given 
values by position using the various setXXX methods. If the same query with different 
parameters is executed many times, it may be faster to use a PreparedStatement instead of 
a Statement. With PerparedStatements the template is sent to the server when the 
statement is created and part of the work of executing the query can be done before the 
parameters are set. This work will not have to be repeated for each set of parameters. 
 
CallableStatements are used to invoke stored procedures. Stored procedures can provide 
some benefits in terms of throughput because smaller amounts of data are passed between 
the client application and the database server. Stored procedures are usually written in a 
database server specific language. For example, Oracle stored procedures are usually 
written in a language called PL/SQL. Through CallableStatements java programs can 
pass parameters to stored procedures and can get return values from stored procedures. In 
the following code segment assume the stored procedure, called P1, expects a string as a 
value parameter (IN in PL/SQL syntax) and returns a VARCHAR as a result parameter 
(OUT in PL/SQL syntax). The call to registerOutParameter indicates that the second 
parameter is a result parameter. 
 
 CallableStatement cs = con.prepareCall("{call P1(?,?)}"); 
 cs.setString(1,"mystring"); 
 cs.registerOutParameter(2, java.sql.Types.VARCHAR); 
 cs.executeQuery(); 
 System.out.println(cs.getString(2)); 
 
 
ResultSet Options 
 
The ResultSet used in the first example is the simplest type of ResultSet. It is referred to 
as a forward-only ResultSet. With a forward-only ResultSet a program can only move in 
one direction through the results of a query. This is a serious limitation in the creation of 
flexible GUIs. For example, a forward-only ResultSet makes it hard (or inefficient) to 
implement a program to allow a user to see the results of a query in a window in which 
the user can navigate forward and backward. Other options for ResultSets are to make the 
ResultSets scroll-insensitive or scroll-sensitive. A scroll-insensitive ResultSet allows the 
program to move forward and backward through the results of a query. It also enables the 
program to move to specific rows in the result. Calling the ResultSet insensitive means 
that changes made to the underlying tables that were part of the query will not be seen in 



 

the ResultSet. A ResultSet that is scroll-sensitive can move around the results like a 
scroll-insensitive ResultSet and it can see the effects of changes to the results based on 
changes to the underlying tables that were part of the query. The limitations on the kinds 
of changes that can be seen are database server dependent. For example, see the 
discussion of keyset-driven semantics in [2]. 
 
ResultSets can also be distinguished based on whether the ResultSet is read-only or 
updatable. Through an updatable ResultSet the underlying table(s) of the query can be 
modified through the ResultSet. The limitations on the types of queries that could 
produce updatable ResultSets depend on the restrictions the server places on updatable 
SQL views. Usually the restriction is that the query uses only one table and the attributes 
in the result of the query include the primary key of the table. 
 
The type of ResultSet that can be created by executing a query on a statement is 
determined when the statement object is created. For example the following code 
segment creates a Statement from which a scroll-sensitive/updatable ResultSet can be 
created. 
 
 Statement st = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,  
   ResultSet.CONCUR_UPDATABLE); 
 
 
MetaData 
 
Metadata is information about features of the database server, the database schema or the 
structure of a ResultSet. The use of metadata information is necessary for creating 
flexible applications. In the case of  an application written to communicate with a 
particular database instance, metadata may not be required but if the application is 
designed to work with many database instances and schemas, then metadata is essential. 
The following code segment creates a DatabaseMetaData object. 
 
 DatabaseMetaData md = con.getMetaData(); 
 
Given a DatabaseMetaData object a program can query about properties of the database 
server such as the data types supported by the server. A DatabaseMetaData object can 
also be used to query about the structure of a particular database instance. For example an 
application could be written in which the input includes the database instance to which 
the user wants to connect. After the program is given the database instance information, 
the program could create a connection to the database and create a DatabaseMetaData 
object. With the DatabaseMetaData object the program can determine the tables in the 
database instance schema. The following code segment invokes getTables on a 
DatabaseMetaData object to produce a ResultSet from which the tables in the database 
can be found. There will be one row in the ResultSet for each table in the database 
instance. 
 
 ResultSet rs = con.getMetaData().getTables("",dbname, "%",null); 



 

 
See java.sun.com for details of the attributes in each row of the result. For example, 
attribute 3 is the name of the table. The interpretation of some of the parameters to 
getTables and other DatabaseMetaData methods is database server dependent. For 
example the above call was made to an Oracle server and since Oracle does not use 
catalogs the first parameter is a null string. 
 
Another type of metadata is ResultSetMetaData. This type of metadata enables a program 
to find characteristics about a particular ResultSet. For example, if a query is created at 
runtime based on user input, the type and number of attributes in the result is not known 
when the program is created. To process the results of the query at runtime, the program 
needs to determine the types and number of attributes in the result. The following code 
segment can be used to dump the contents of a table to standard output. The table name is 
given as a command line argument. The code segment assumes all the types of the 
columns are compatible with getString (most types such a VARCHAR, INTEGER, etc. 
are compatible with getString). The code segment could be made more flexible by using 
the method getColumnType to find the type of a column and thus to determine the 
getXXX method to use to get the value of the column. 
 
 ResultSet rs = st.executeQuery("select * from " + args[0]); 
 int numCols = rs.getMetaData().getColumnCount(); 
 while (rs.next()) 
 { 
  for (int cols = 1; cols <= numCols; cols++) 
   System.out.print(rs.getString(cols) + " "); 
  System.out.println(); 
 } 
 
 
Support for Transactions 
 
After a connection is made to the database server the execution of each individual SQL 
expression is treated as a separate transaction. If the application requires the execution of 
a group of SQL expressions to be treated as a single transaction, the following code 
segment can be executed. 
 
 con.setAutoCommit(false); 
 
After this line of code is executed, database updates will not be committed until an 
explicit call to commit is made. If during the execution of the sequence of SQL 
expressions that are part of the transaction an event occurs that requires the transaction to 
stop, then the method rollback can be called. Support for transactions, such as the 
isolation level, is dependent on the implementation of transactions on the database server.  
 
 
Student Programming Projects 



 

 
Before students enroll in CS 364 they must complete a year-long course in software 
development. The language used in the course is Java. The JDBC part of CS 364 is taught 
after material on the basics of the relational data model, SQL, and ER modeling. About 
three weeks is spent discussing database application programming and JDBC. When the 
JDBC lecture material is completed, the students are assigned a development project. The 
students have about 4 weeks to complete the project. During the last week of the 
semester, students demonstrate the project, one-on-one, for the instructor.  
 
Most of the projects involve implementing a client interface to perform operations on a 
database from the textbook. These databases have included a library database [3], a video 
store database [4], and a customer/agent database [5]. In the most recent project, students 
were given a problem description for a seed company database. Students created an ER 
design of the database and then implemented an application to perform operations on the 
database. 
 
Each project includes a list mandatory operations the students are required to implement. 
Students also specify additional operations they want to implement. Projects are 
evaluated based of the quality of the implementation and on the number of operations 
supported by the implementation. Operations that have been implemented include 
borrowing a book from a library, placing an order for a customer, returning a video, or 
checking the status of an outstanding seed order. Some projects have included a general 
query evaluation tool that required use of DatabaseMetadata. All the JDBC features 
described earlier in the paper have been used in some CS 364 project with the exception 
of CallableStatement and transactions (these have been used with undergraduates in a 
second database course). 
 
Since the drivers for both Oracle and MySQL are freely available and since many 
students have computers with Internet access available at home, many students developed 
their programs at home. This was not only convenient for the students but also gave them 
a better sense of the flexibility of JDBC and distributed natured of the software they 
developed. 
 
 
Database Servers 
 
CS 364 has used two different database servers. The first year JDBC was taught, a 
MySQL server running on Linux on G3 Apple hardware was used. The JDBC component 
was a late addition to the course content and MySQL was the most easily accessible 
server software available. MySQL was easy to install and maintain. The semester it was 
used CS 364 had 95 students and MySQL supported 95 small database instances on a 
desktop class machine.  
 
In subsequent semesters an Oracle 8 server running on Windows 2000 has been used. 
Oracle is a much larger more complex product than MySQL. There are numerous reasons 
why we started using Oracle. Some of them include the increase use of Oracle at UW-L 



 

for administrative functions, the availability of Oracle through a state wide licensing 
agreement, the desire of the IS department to use Oracle in IS 411 (CS 364 is a 
prerequisite to IS 411), and the sense that both CS students and IS students would benefit 
for experience with a database server that is so widely used in industry. 
 
In the past I have maintained an Oracle server but currently the Information Technology 
department at UW-L maintains an Oracle server for instruction purposes. An Oracle 
database server is a very complex product that can require a lot of system administration 
experience. With appropriate support I think Oracle is a good choice. However, if a 
department has limited resources and limited system administration experience, MySQL 
might be a better choice since it is easier to maintain. When I used MySQL it had limited 
support for transactions and nested queries but like most software it continues to evolve 
and even the version I used three years ago had sufficient power for an introductory 
course. 
 
 
Conclusion 
 
Using JDBC in CS 364 has significantly improved the course. Students build on their 
Java experience and on the relational database ideas taught in the course to develop 
applications that have many of the characteristics of commercial database applications.  I 
think this experience motivates students and helps them retain the basic database skills 
and knowledge taught in the course. 
 
References 
 
1. Speegle, Gregory D. (2002). JDBC: Practical Guide for Java Programmers. Morgan 
Kaufmann. 
 
2. Lewis, Philip M., Bernstein A., and Kifer, M. (2002), Databases and Transaction 
Processing. Addison-Wesley. 
 
3. Johnson, James L. (1997). Database: Models, Languages, Design. Oxford University 
Press. 
 
4. Riccardi, Greg (2001). Principles of Database Systems with Internet and Java 
Applications. Addison-Wesley. 
 
5. O'Neil, Patrick and O'Neil, Elizabeth (2001). Database: Principles, Programming, and 
Performance. Morgan Kaufmann. 
 
 
Acknowledgements 
 
CS 364 serves both Computer Science and Information Systems students. For 
Information Systems students the course is a prerequisite to IS 411. I want to thank Bill 



 

Wehrs for many good conversations we have had about the content of CS 364 and about 
making the content of CS 364 and IS 411 work to the benefit of the students. Also I want 
to thank John Tillman, Bob van Abel, Heath Ahnen, Mike McGargle, Sandy Suchla, and 
Barry Sommers, for providing IT resources and support needed to manage the Oracle 
server.  


