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Abstract 
   
ATrExML is a phylogenetic program that uses maximum-likelihood analysis of 
nucleotide sequences to produce evolutionary trees.  Due to the time-consuming nature of 
maximum-likelihood analysis of nucleotide sequences, increasing the efficiency of 
ATrExML is essential to improving the quality of the results produced by the program.  
We predicted we could improve the runtime performance of ATrExML by replacing an 
extensively used data structure, a sorted array, with a more efficient data structure, a 
splay tree.  The data structure in question stores the evolutionary trees that are being 
considered as the program executes.  The correctness of the new code was verified by 
running both the original and modified code on the same data sets (i.e. nucleotide 
sequences), and by verifying that they both produced the same output.  We timed each 
execution and preliminary results indicate that our hypothesis was correct; we have 
achieved runtime performance increases of up to 63%.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction 
 
The goal of our research project is to increase the runtime efficiency of ATrExML 
(Stamatakis et al., Aug 2002; Stamatakis et al., Nov 2002), a phylogenetic program for 
maximum-likelihood analysis of nucleotide sequences. ATrExML generates a large 
number of evolutionary trees by employing maximum-likelihood analysis to examine 
nucleotide sequences.  Some of the evolutionary trees that are produced during this 
analysis are more likely statistically to be supported by the nucleotide data than others 
that are produced.  The goal of ATrExML is to find as many evolutionary trees as 
possible that are not statistically significantly different from the best tree found.  
ATrExML was created by modifying TrExML (Wolf et al., 2000), which in turn was 
originally derived from fastDNAml (Olsen et al., 1994).  The goal of fastDNAml is to 
locate only the single most likely evolutionary tree supported by the nucleotide sequences 
that it analyzes.  fastDNAml uses a sorted array to hold candidate trees (typically 
hundreds or a few thousand) during the computation process.  
 
Due to the time-consuming nature of maximum-likelihood analysis of nucleotide 
sequences, increasing the efficiency of ATrExML is essential to improving the quality 
and quantity of the results produced by the program.  We hope to improve the runtime 
performance of the program by replacing an extensively used data structure, a sorted 
array, with a more efficient data structure, a splay tree.  The data structure in question 
stores the evolutionary trees that are being considered as the program executes.  
ATrExML inherited this sorted array from its predecessor, fastDNAml.  This sorted array 
efficiently serves fastDNAml in achieving its goal, but ATrExML requires more 
extensive use of this data structure.  The divergent goal of ATrExML necessitates 
changing the data structure to optimize efficiency.     
 
 
Modifications 
    
 
Choosing a more efficient data structure 
 
ATrExML uses two “BestList” structures to store the numerous evolutionary trees that 
are generated and manipulated throughout the execution of the program.  The BestLists 
are of fixed size, as determined by the sequence file that is being used.  As the program is 
executed, evolutionary trees are removed from the first BestList one at a time.  After a 
tree is removed it is used to generate a collection of new trees.  Each new tree is 
evaluated and it is stored in the second BestList if it is more likely than the worst tree in 
the second BestList (or if the second BestList is not full).  Both BestLists are kept in 
sorted order, from the most likely tree to the least likely tree.  Since the BestLists are 
sorted in this manner, trees near the beginning of the first BestList are more likely to be 
precursors of trees in the second BestList. 
 
The BestList structure relies on its sorted array component to physically store the 
evolutionary trees that are being considered as the program executes.  Only two 
operations are performed on this array.  Insertions are the most common operation.  An 



insertion into the array requires O(n) pointer updates.  The other operation involves 
traversing the array from the most likely evolutionary tree to the least likely evolutionary 
tree.  With a sorted array, locating the next evolutionary tree during a traversal should 
take O(1) time.  However, the actual implementation in ATrExML (inherited from 
fastDNAml) uses binary search to locate the next evolutionary tree.  Thus, traversing 
from one evolutionary tree to the next is inefficient, taking O(log n) time.  The total time 
taken to traverse the array is O(n log n) time. 
 
Improving the efficiency of inserting evolutionary trees into the BestList was our primary 
concern.  Since ATrExML has tendencies to access similarly valued trees in order (i.e., it 
will work with the beginning or end of the list for a while), we conjectured that replacing 
the array with a splay tree would allow the program to perform more efficiently.  Splay 
trees are self-adjusting binary search trees.  Any operation performed on a splay tree 
causes it to rearrange itself to keep the most recently accessed values near the root of the 
tree.  Splay trees offer optimal performance when nodes that are close together are 
accessed subsequently.  Operations on a splay tree have an amortized run time of O(log 
n).  In particular, locating any node in the splay tree requires O(log n) amortized time.  
For more information on splay trees, see any standard text on data structures and 
algorithms (e.g., Goodrich and Tamassia 2002, p. 185). 
 
 
Implementation 
 
To ease discussion, we will refer to the splay tree version of ATrExML as SATrExML.  
To create SATrExML, we replaced the sorted array component of the BestList structure 
with an implementation of a splay tree.  Next, we had to identify all functions that 
utilized the previously existing data structure.  All of these functions were then modified 
to interface appropriately with the splay tree implementation.  In addition, we added 
routines to carry out the required splay tree rotations.   
 
It was also important to optimize the splay tree’s memory usage.  ATrExML does not 
release the large blocks of memory necessary for storing evolutionary tree arrangements 
once they have been initialized; it reuses the same evolutionary tree structures to improve 
efficiency.  SATrExML’s splay tree was designed to mimic ATrExML’s sorted array in 
regards to this issue.  SATrExML also reuses the evolutionary tree structures to improve 
efficiency.   
 
 
Materials and methods 
 
 
Experimental data 
 
The performance of the SATrExML was compared to that of ATrExML (Version 1.1.0) 
using small ribosomal subunit RNA (16S-rRNA) gene sequences from 13 Archaebacteria 
and three Eubacteria.  The sequences were originally retrieved in aligned format from the 
Ribosomal Database Project’s (Maidak et al., 1997) World Wide Web site 



(http://www.cme.msu.edu/RDP/html/index.html) and consist of (with RDB codes and 
accession numbers in [...;...]): Methanospirillum hungatei [Msp.hungat; M60880], 
Halococcus morrhuae [Hc.morrhua; X00662], Methanothermus fervidus [Mt.fervid1; 
M32222], Thermococcus celer [Tc.celer; M21529], Pyrodictium occultum [Pyr.occult; 
M21087], Methanococcus jannaschii [Mc.jannasc; M59126], M. voltae [Mc.voltae; 
M59290], Methanobrevibacter arboriphilicus [Mbb.arbori; C.R. Woese, unpublished], 
Methanolobus oregonensis [Mlo.oregon; U20152], Haloferax volcanii [Hf.volcani; 
K00421], Pyrococcus abyssi [Pc.abyssi; L19921], Methanopyrus kandleri [Mpy.kandl1; 
M59932], Pyrobaculum aerophilum [Pyb.aeroph; L07510], Aquifex pyrophilus 
[Aqu.pyrop; M83548], Escherichia coli [E.coli; J01695], and Bacillus subtilis [B. 
Subtilis; K00637, M10606, X00007].  Columns containing gaps or ambiguous characters 
were removed from the alignment yielding a revised alignment with 1200 sites.  Finally, 
because the divergence between the species most likely spans more than a billion years, 
the nucleotides were recoded to purines R = A or G) or pyrimidines (Y = C or T).  We 
chose this initial data set to test SATrExML because it was also used to test TrExML and 
ATrExML when they were first created. 
 
 
Hardware and software 
 
We conducted the tests on 16 sequences and recorded the run-time, as that given by the 
gettimeofday function in the time.h library, on a 1 Gb DDR RAM, two AMD Athlon (tm) 
MP 2000+ (only one processor was used for these experiments) system with the Redhat 
Linux 8.0 (2.4 SMP Kernel) operating system.  Executable code was generated using the 
GNU C compiler (Version 3.2) with the -O3 compiler option.  We also performed 
functional analysis with gprof, requiring the -pg compiler option.  For all tests, the A 
parameter of the sequence files was set at 8.  The A parameter determines the number of 
species for which the tree-space is fully explored.  We varied the K parameter of the 
sequence files from 5,000 to 105,000 in increments of 5000.  The K parameter 
determines the maximum number of trees of a given size that are kept in the BestList data 
structure. 
 
 
Comparative metrics 
 
The performance of SATrExML was compared to that of ATrExML by examining the 
total CPU time taken by the program.  Measurements were taken with the gettimeofday 
function, a standard C function that can be used to measure CPU time.  Only the K 
parameter, which determines the maximum number of trees kept, was modified with each 
run.  All other parameters were held constant throughout the series of tests.  We also 
examined function CPU time with gprof.  We verified the correctness of SATrExML by 
asserting that the output produced by both programs was identical with the Unix diff 
command. 

 
 
 
 



Table 1. Runtime Efficiency Improvements Based on CPU Time 
Maximum 
number of 
trees kept 

SATrExML 
CPU time  
in seconds 

ATrExML 
CPU time  
in seconds 

Efficiency 
increase 

percentage 

 Maximum 
number of 
trees kept 

SATrExML 
CPU time  
in seconds 

ATrExML 
CPU time  
in seconds 

Efficiency 
increase 

percentage 
5000 1022.90 1075.01 5  60000 11530.43 21500.08 46 
10000 2032.81 2267.56 10  65000 12486.65 24311.63 49 
15000 2981.87 3473.34 14  70000 13396.62 27416.45 51 
20000 3916.57 4819.00 19  75000 14419.64 30738.89 53 
25000 4877.59 6307.47 23  80000 15315.08 34288.08 55 
30000 5811.59 7973.33 27  85000 16317.91 38398.71 58 
35000 6775.91 9859.40 31  90000 17187.88 41187.59 58 
40000 7713.34 11878.16 35  95000 18191.45 44775.97 59 
45000 8701.70 14197.87 39  100000 19148.24 50180.13 62 
50000 9622.58 16382.67 41  105000 20150.52 54598.25 63 
55000 10606.38 18761.42 43      
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Figure 1. Runtime Efficiency Improvement of SATrExML over ATrExML 

 
 

 
Table 2. Expected Runtime Efficiency Improvements Based on Functional Analysis 

Maximum 
number of 
trees kept 

Expected 
efficiency 

increase 
percentage 

Actual 
efficiency 

increase 
percentage 

5000 3.41 5 
10000 8.31 10 
15000 8.08 14 
20000 8.73 19 
25000 6.98 23 
30000 4.12 27 
35000 5.65 31 
40000 6.55 35 
45000 6.33 39 
50000 5.68 41 
100000 5.84 62 



Results and discussion 
 
 
Preliminary results 
 
The correctness of the new code was verified by running both the original and modified 
code on the same data sets (i.e. nucleotide sequences), and by verifying that they both 
produced the same output.  We timed each execution and preliminary results indicate that 
our hypothesis was correct; by replacing the array with an implementation of a splay tree, 
we have achieved runtime performance increases of up to 63% (Table 1).   
 
Initially, the performance increases were inconsistent and unpredictable.  Running the 
tests on different systems produced dramatically different results.  Additionally, the 
modified code did not always outperform the original code.  We believe that these 
runtime fluctuations were due to the extensive memory usage of SATrExML (at times 
greater than 500 MB) and because the splay tree was not optimized to efficiently acquire 
and release memory.  ATrExML reuses evolutionary tree structures to increase 
efficiency.  Our first implementation of SATrExML did not reuse evolutionary tree 
structures, and run-time fluctuations occurred.  After optimizing the splay tree’ s memory 
usage, by reusing evolutionary tree structures, SATrExML became more predictable and 
efficient. We were able to develop a more consistent runtime performance increase by 
optimizing the splay tree’ s memory usage. 
 
Based on functional analysis (Table 2), we would only anticipate runtime performance 
increases of up to 9%.  We would also expect the performance increase to stay relatively 
constant as the number of evolutionary trees kept is increased.  The actual results that we 
experienced exhibit roughly linear growth as the number of evolutionary trees kept is 
increased (Figure 1).  We believe that the splay tree performs better with the memory 
management system of the operating system (i.e., paging and caching) than a sorted array 
does, especially as the size of the structure increases.  Preliminary testing of 
SATrExML’ s performance on systems with small memory, where extensive swapping is 
required, suggests that SATrExML performs poorly in this setting.  Further tests are 
being conducted to determine whether this hypothesis is correct. 
 
 
Future Work 
 
Future work will involve more extensive testing of SATrExML to validate the 
correctness of the program and to provide additional verification of our preliminary 
results (i.e., efficiency increase).  We plan to test SATrExML with additional data sets 
that include varying numbers of sequences, sites, and categories.  We also need to test the 
compatibility of SATrExML with other untested ATrExML options.  Another interesting 
question centers on the origin of evolutionary trees in the second BestList.  Do they 
always come from trees ranked near the beginning of the first BestList?  If so, substantial 
computation time savings could be achieved by processing only a percentage of the 
evolutionary trees from the first BestList. 
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