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Abstract 
 
This paper focuses on an NP-hard parallel task-scheduling problem.  The problem receives 
input in the form of a precedence graph representation of a job where the objective is a task-
to-processor allocation that minimizes the total computation time of the job.  The sub-tasks 
can be executed in parallel on a network of identical computing entities.  Communication and 
latency constraints are also imposed making the problem more difficult to solve.  Presented is 
an approximation algorithm for this problem that runs in O(mn) time, where n is the number 
of nodes (or tasks) in the job and m is the number of edges.  The algorithm utilizes the fact 
that the longest path problem can be solved to optimality, in O(m) steps, on graphs 
containing no directed cycles - which is consistent with precedence graphs.  Presented are 
results of the performance of the algorithm through extensive testing on random graphs. 
 
 
 
 
 
 
 



Introduction 
 
This paper involves an approximation algorithm that uses multiple computer processors to 
solve an NP-hard parallel task scheduling problem.  Instead of having a single computer do 
all the computations, the work is divided among a network of computers.  The goal is lower 
overall computation time by running separate tasks in parallel on identical workstations.  
Since computer processor speeds will not improve forever and the physical limits of 
processors are being approached, we must look for new ways to improve computation speed.  
The algorithm works on allocating workload to various processors to improve computation 
time and efficiency. 
 
In cases where there is more than one available processor it is essential to have an algorithm 
that makes use of the given hardware.  Dividing the workload amount among multiple 
processors allows for each processor to handle only part of the problem, verses having a 
single processor do all of the computations. 
 
 
Graph Representation of the Problem 
 
Precedence graphs are used to model the real world situation of executing a job composed of 
multiple (sub) tasks on a network of multiple processing entities.  A precedence graph is a 
rooted directed acyclic graph (DAG) such that there exists a directed path between the root 
node and every other node in the graph.  The entire graph is considered as the overall job to 
be computed, and the nodes are the individual tasks.  The problem dealt with in this paper 
constrains the precedence graphs to those with exactly one leaf node such that every node in 
the graph has a directed path to the leaf node.  Precedence graphs are used because a rooted 
graph equates to the real world arrangement of having a program originate from a single 
computer.  Also, all valid graphs contain exactly one leaf node; this node represents the 
results of the job’s execution returning to the point of origin.  Note that it is desirable to 
maintain the property of single-input/single-output.  The nodes also each have an integer 
value associated with them, this number represents the respective execution time of that task 
on any processor in the network.  In a job it is often the case that one task may require data 
from a separate task before it can run.  In this case, the second task must wait until the first 
has completed before it can run and the data must then be transmitted from the first task to 
the second.  This model reflects this real world idea by having directed arcs between the 
nodes that have this data dependency.  The parent task(s) of any given task are the tasks that 
must be completed before the child task can begin execution. 
 
Sending information from one task to another is called communication.  Communication can 
take a significant amount time when two tasks with a data dependency (arc) between them 
are executed on different processors.  Varied communication time can be represented in the 
graphs by associating an integer value on the arcs representing the time it takes for the parent 
node to send the required data to the child node.  However, this paper restricts 
communication to a constant for the entire graph.  Arcs in the graph are all weighted the 
same.  If the tasks are executed on the same processor, the time to communicate is considered 
negligible or zero since no data needs to be transmitted over the relatively slow network.  In 



addition to communication time, a latency constraint is added to the model to simulate the 
delay experienced between the time that one processor starts sending a message and the time 
another processor begins receiving that message.  The latency value can also be accurately 
described as the amount of time it takes to send one bit across the network.  It is also 
assumed that a processor can “spool” communication data while it is executing tasks or doing 
other communication, delaying the time needed to read the data until after the processor 
becomes free.  This is important because both task execution and communication is 
considered as exclusive busy time for the processor. 
 
The real world problem of task allocation on multiple processors now translates into 
assigning each node in a graph to a specific processor.  The algorithm takes any graph 
constrained to the graph properties discussed above as input and returns an approximate 
solution schedule.  The schedule contains a task to processor assignment for each task in the 
graph.  For example, if the algorithm were given a graph with 4 nodes, it might return a 
schedule that designates the following:  “run task 1 on processor 1, run task 2 and 3 on 
processor 2 and run task 4 on processor 1.”  This is the goal of the algorithm. 
 
 
Previous Work 
 
Other researchers in the field currently work on similar problems to this, however they do not 
constrain themselves with a communication and latency model.  Many deem them to be 
redundant or superfluous, meaning that their existence and consideration do not affect the 
optimal solution to any reasonable degree.  This, however, is false in many practical 
situations.  When the communication and/or latency times are comparable to the execution 
times of the tasks, these constraints greatly affect the optimal task scheduling.  This is 
especially the case when considering a network of computers in an office building connected 
through a relatively slow network.  For example, a 10 Mbps LAN is relatively slow 
compared to the on-board wires used for message passing between processors in a super 
computer.  Many other researchers have only considered the problem assuming that super 
computers or networks with almost zero communication and latency values are the reality.  
Since this is not always the case, this research considers what happens when communication 
and latency are far from zero.  In addition, the model being considered by this problem also 
imposes busy time for communication on both the sending and receiving processor.  Many 
other researchers only consider communication from the sending processor.  Additional 
background information and more precise problem definitions for these similar problems 
may be found in [2]. 
 
 
Precise Problem Definition 
 
Let G = (V,A) be a graph defined by a set of vertices and arcs such that G is a precedence 
graph with exactly one leaf node.  Cij is the communication time required to upload and 
download data from the network when transmitting from task i to task j. and L is the latency 
constant for the network.  The optimal solution must constrain to the following: 
 



1) If there exists an arc in A from task i to task j in V, then task i must finish computation 
before task j can begin. 

2) If there exists an arc in A from task i to task j in V and they are scheduled to be 
executed on different processors then the processor that task i is scheduled on must 
spend Cij amount of time uploading data to the network starting some time after task i 
has finished executing.  The processor that task j is on must spend Cij amount of time 
downloading data from he network starting some time that is at least L amount of time 
after the corresponding upload started and the download must finish before task j can 
start executing. 

3) Two tasks cannot execute simultaneously on the same processor. 
4) Processors cannot communicate more than one task transmission at one time. 
5) Processors cannot communicate and execute tasks at the same time. 
6) The end time of the execution of the task represented by the leaf node in G is 

minimized.  (Equivalent to minimizing the total computation time of the schedule). 
 
It is no trivial task to find a way to assign tasks to processors.  In fact, it has been proven that 
even finding the optimal solution on a 2-level tree graph is an NP-hard problem [1].  Using 
an exponential time algorithm it is possible to find an optimal solution for any given graph 
input.  However, computing the optimal solution using an exponential number of 
computations in cases of moderate to large input size takes an unrealistic amount of time.  
The goal is therefore to find an approximation algorithm that can generate a scheduling close 
to the optimal solution within a realistic amount of time.  Basically, the approximation 
algorithm sacrifices a certain amount of accuracy for a very large amount of time savings. 
 

Multi-Longest Path Approximation Algorithm 

For a non-directed graph, the longest path problem is NP-hard.  It is an important fact for this 
algorithm that the longest path can be calculated to optimality in a polynomial number of 
steps on graphs containing no directed cycles, which is consistent with all valid input to the 
problem, because precedence graphs contain no directed cycles.  The algorithm repeatedly 
finds longest paths in the graph and schedules all the nodes in each path to a separate 
processor.  Pseudo code for this algorithm follows: 
 

Step 0)  Let NOP : = 0 
Step 1)  Let Si : = -1, ∀ i ∈ V 
Step 2)  Let lvl  : = minimum{lev | lev = original level of node i, ∀ i ∈ V} 
Step 3)  Let LongestPath : = the empty path 
Step 4) ∀ node n on level lvl, 

Step A) Let path : = PathWithMaxLength{Pa | Pa = LongestPath(n,p) such that 
∃ a path from n to p where p ∈ V} 

Step B) If PathLenght(path) > PathLength(LongestPath) 
 Then Let LongestPath : = path 

Step 5)  Let Si : = NOP, ∀ i ∈ V, such that i ∈ LongestPath 
Step 6)  Let V : = V \ {i | i ∈ LongestPath} 
Step 7)  Let NOP : = NOP + 1 



Step 8)  If V != {} Then Goto Step 2 
 
The motivation for this algorithm is centered on the property that a lower bound for the 
optimal solution value is the length of the longest path of the graph.  This is because there 
exists no faster way to compute the tasks on the longest path than to schedule them on the 
same processor.  Also, the amount of time required for this computation is equal to the sum 
of the execution times of the nodes on the longest path.  Therefore the entire job will 
certainly take at least that amount of time to finish computation, no matter what the rest of 
the schedule is.  The reason that all the nodes on the longest path are scheduled on the same 
processor is that the longest path can also be considered as a critical path, to add 
communication time between these tasks (by scheduling some of them to other processors) 
would consequently raise the lower bound of the overall computation time.  Since the longest 
path is critical to compute in the lowest amount of time possible, the entire path is scheduled 
onto the same processor, since there is no faster way to compute the tasks on that path.  This 
property holds for all of the paths in the graph, but since the longest paths are the ones that 
are the most critical, the algorithm assigns each of the longest paths to different processors. 
 
 
Algorithm Analysis 
 
The multi-longest path algorithm generates solutions in O(mn) time, where m is the number 
of edges in the graph and n is the number of nodes.  This is significantly less time than the 
exponential NP-hard brute force algorithm takes. 
 
Lemma:  For any precedence graph with n nodes, the multi-longest path algorithm could call 

the longest path algorithm a maximum of O(n) times. 
Proof: The algorithm requires n-2 longest path computations when the graph consists of a 

single root and leaf node and all the remaining nodes are placed on a single level 
between the root and leaf.  For this case, the longest path algorithm must be called 
for each node that isn’t the root or leaf node before all the nodes have been 
scheduled to a processor. 

 
Therefore, the multi-longest path algorithm calls the longest path algorithm at most n-2 
times, hence O(n) calls to longest path.  Since the longest path algorithm completes in O(m) 
time, due to a breadth first arc traversal computation, the resulting overall complexity is 
O(mn). 
 
The performance of the multi-longest path algorithm was obtained through extensive testing 
on randomly generated precedence graphs.  A possible method of testing would have been to 
generate graphs tailored with the algorithm in mind.  Testing done in this manner may have 
produced better results for the algorithm, but it would not accurately represent all scheduling 
problems.  To more fully test the algorithm over a variety of cases, random graphs were used.  
The test cases were generated to reflect all types of precedence graphs to better simulate a 
real world situation. 
  



The random precedence graphs were generated with a specific set of constraints, namely a 
range of execution times, communication times and latency times.  Each node in the graphs 
was generated with a random execution time in the range of 1 to 1000.  The graphs were also 
each generated with random communication and latency time in the range of 1 to 100.  The 
fixed communication and latency times reflect a network of workstations where the 
communication and latency times between each pair of processors is comparable.  These 
values were chosen in order to have an average approximate ratio of communication/latency 
time to execution time of 1 to 10.  This type of ratio is required for testing because if the ratio 
becomes too large, the overall computation time will be dominated solely by the execution 
times.  In these cases, the optimal solution trivially becomes to schedule every task to the 
same processor.  This is because scheduling a task on a different processor would result in 
too much time spent communicating and make concurrent execution of tasks not worth the 
communication time entailed.  Conversely, if the communication/latency to execution time 
ratio becomes very small then the communication and latency times are insignificant and 
have little effect on the optimal scheduling.  Again, the optimal solution becomes trivial; 
simply schedule every task, i, to processor i. These cases are not of interest to this research 
because the optimal solution, in these cases, can be determined in O(1) time, thus there is no 
reason to test an approximation algorithm on these types of input. 
 
Testing was done on many different graphs with a variable number of nodes, execution, 
communication, and latency times.  The adjacency structure is also randomized, (ie- the 
placement of the edges).  The graphs were generated and tested in groups.  The graphs were 
grouped together based on the number of nodes in the graph.  Results were generated for 20 
4-node graphs, 320 5-node graphs, 810 6-node graphs, 1024 7-node graphs, 625 8-node 
graphs, 259 9-node graphs, 32 10-node graphs and 16 11-node graphs.  The reason for the 
decreasing number of tests executed is because the brute force optimal solution algorithm 
takes a very long time to run on 10-node and higher graphs.  Therefore these graphs cannot 
be tested as thoroughly.  It should be noted that the data is less reliable or representative of 
the performance of the algorithm when fewer numbers of random tests are performed.  Also, 
testing begins with 4-node graphs because there only exists one 3-node graph that is valid 
input to this problem, and the optimal solution is to schedule all three tasks on the same 
processor.  Similarly, due to the property that there exist few graphs of n nodes when n is 
small, for example 4 or 5, not as many graphs of that size were tested because there is no 
reason to repeat tests.  This property exists because of a limited amount of combinations for 
adjacency structure for small valid precedence graphs with exactly one leaf node. 
 
The procedure for testing the graphs is as follows:  run the brute force algorithm on the graph 
to find the worst and optimal solutions and then run the multi-longest path algorithm to find 
an approximate solution.  After each group of tests is completed, a file is generated 
containing the averages of the worst, optimal, and approximated solutions for the set of 
graphs.  The range of possible performances for the approximation algorithm is somewhere 
between the optimal solution and the worst solution.  The multi-longest path algorithm’s 
performance is evaluated by how close its solution value is to the optimal solution compared 
to the range of possible solution values.  This comparison is expressed in the following ratio:  
(Average Approximate Solution – Average Optimal Solution) / (Average Worst Solution – 



Average Optimal Solution).  These values are the average solution values for the entire set of 
n-node graphs that were tested for n = [4,11].  This is referred to as Ratio 1 in Table 1. 
 
This method of algorithm analysis is ideal because comparing approximated solutions to only 
the optimal solution can be misleading.  For example, say the optimal solution is 90 time 
units for a given graph and the worst solution is 100 times units for the same graph.  If the 
approximate solution returns 99 time units, there is a temptation to conclude that this is 
favorable performance because it is only 9 time units or 10% above the optimal solution.  
However, when the range is considered, a result 99 can be accurately seen to be poor 
performance because it is far closer to the worst case than the optimal solution.  Also 
presented is the percent of the average approximate solution value over the average optimal 
solution for each set of n-node graphs that were tested for n = [4,11].  This is referred to as 
Ratio 2 in Table 1. 
 
Depicted in Figure 1 are the first three columns of Table 1 drawn as lines with the number of 
nodes on the x-axis and the total computation time on the y-axis. 
 

Table 1:  Approx. solution in relation to the optimal 
 

 
 



 
 

Figure 1:  Average Solution Values 
 
 
Future Work 
 
The most important step to take with this algorithm now is to prove a bound on the 
performance, no matter what graph is given to it.  This means that, for example, it may be the 
case that for any valid graph, the approximate solution value will never be worse than twice 
the value of the optimal solution.  If no bound is proven then testing should continue for 
larger graphs to determine if the trend above can be extended. 
 
It is also always important to continue to look for other approximation algorithms that may 
approximate solutions to the problem in a fast polynomial amount of time with good 
performance.  Many graph problems are closely related to each other, meaning that one graph 
problem can often help solve another.  Recall that this algorithm utilized the longest path 
algorithm for directed acyclic graphs.  Keeping this in mind, a good method of developing 
new approximation algorithms is to look into other solvable (ie- polynomial time) graph 
problems. 
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