
File Type Detection Technology

Douglas J. Hickok
Computer Science and Software Engineering Department

University of Wisconsin – Platteville
Platteville, WI 53818
hickokd@uwplatt.edu

Daine Richard Lesniak

Computer Science and Software Engineering Department
University of Wisconsin – Platteville

Platteville, WI 53818
lesniakd@uwplatt.edu

Michael C. Rowe, Ph.D.

Computer Science and Software Engineering Department
University of Wisconsin – Platteville

Platteville, WI 53818
rowemi@uwplatt.edu

Abstract

File type identification is a difficult but increasingly important task. There are no global
standards for file types and there are catalogues of several thousand known file types.
Filters, such as email SPAM, virus blockers, adware/spyware, and steganalysis detectors
are generally file type specific and may need accurate file type knowledge to work
effectively. Corporations and government agencies block specific file types in an attempt
to keep sensitive data from leaving or worms and viruses from entering their networks.
Another important use of file type is as a means of limiting “recreational” file use that
can absorb significant quantities of network bandwidth and storage. Some of the more
commonly filtered file types for the above considerations include: “.vb”, “.vbs”, “.exe”,
“.mp3”, “.wav”, “.mpeg”, “.wmv”, and “.avi”.

Introduction

With privacy, security, and wise use of computational resources becoming increasingly
important to organizations, the technologies that address these concerns are increasingly
being faced with the problem of file type detection.

One method of safeguarding privacy, security, and resource use is email attachment
filtering. By blocking certain attachments, security can be protected by blocking in
bound attachment types that are capable of harboring malicious content, privacy can be
safeguarded by filtering items on the way out that may contain potentially revealing
information, and resource management can be facilitated by blocking items that are
primarily used for entertainment. Preventing the dissemination of revealing information
has become especially important for healthcare providers as of late with the enactment of
HIPAA, the health insurance portability and accountability act. Under HIPAA, health
care providers can face lawsuits and monetary penalties if they do not make sufficient
effort to protect privacy of patient information [1]. Filtering attachments successfully
depends on reliable and efficient file type detection.

A method that is central to any effort to protect security is virus scanning. While virus
scanning does not rely as heavily on file type detection as attachment filtering, virus
scanners often skip file types, which are believed to be incapable of harboring viruses. If
the file type detection technique is not reliable, viruses may not be detected until it is too
late.

Steganography is the art of hiding in plain sight [2, p5]. Steganography tools can hide
messages inside of pictures or other files without changing their appearance.
Steganalysis, which detects hidden content, is an extremely important field at the
moment, spurred by not only traditional security concerns but also by reports that
terrorists may communicate through steganography [3]. Companies’ sensitive
information is also at risk due to steganography and it is an attractive method for
smuggling sensitive data out of organizations. Analysts estimate that between 70% to
90% of all corporate network attacks come from the inside, and that the number of
“insiders” is growing exponentially [4]. The FBI estimates that corporations loose $24
billion to information theft each year [5]. Due to these concerns, there is an increasing
interest in steganalysis, which in turn relies heavily on file type detection. Automated
steganalysis depends on file type detection due to the fact that steganography methods are
often dependent of file type, with different methods of embedding being used on pallet
based images vs. jpegs, and different methods being used on images vs. other binaries. If
the wrong steganalysis method was applied to the wrong file type, then steganographic
content would not be detected or a false alarm would be signaled. Using every
steganalysis method on every file would be computationally inefficient, and inappropriate
for an automated system.

We have identified three main methods of file type detection:
1. identifying file types by file extension,
2. identifying file type by magic bytes, and
3. identifying file types by character distribution.

Each of these detection methods has strengths and weaknesses, and no one method is
comprehensive or foolproof enough to satisfy file type detection needs. This indicates
that file type detection is an area that warrants additional attention.

File Type Detection using File Extension

The simplest and most common file type detectors employ the naïve method of looking
only at file extensions. This naïve file type detector can easily be spoofed by simply
renaming a file. There are multiple ways of determining file type other than trusting the
file extension.

File type detection based on extension does not even have to open the file in order to
detect the type it claims to be, and is by far the fastest way to classify a file. Speed of file
type detection is important due to the volume of files that must pass through these
utilities, and is a major reason for the use of file type detection based on extension.

A second reason extensions are examined in file type detection is that all file types are
generally accompanied by an extension, at least in Windows based systems. This allows
this type of method to be applied to both binary and text based file types.

Problems with Using File Extension

The major problem with using file extensions for file type detection is that extensions are
easily spoofed and altered. It is painless to change the extension in Windows, and
requires little more than a couple mouse clicks and a few keystrokes. Just as it is not
necessary to open a file when classifying based on extension type, it is not necessary to
open a file to mislead this classification technique.

Linux/Unix systems introduce another complication with file type detection based on
extension type, in that an extension is not required on Linux systems. Not only is the fact
that extensions are not necessarily present cause a problem, but Linux allows optional
extensions of any string regardless of file type. This allows executables and scripts to be
hidden from inexperienced administrators. An example of this would be a malicious
executable named evil.mp3 and appear at first glance to be a music file. This script
would not even need to have its extension changed, and would be run by typing
“./evil.mp3”. Windows is a little more dependant on file extensions. If you double-click
on a renamed image file called “bitmap.mp3”, it will try opening it in a music player and
fail. However, if you use Paint to open it, it will open without a problem [6, p105].

Attachment filtering based on file extension is not only the most common method, but
also the most easily bypassed [7]. When attachment filtering is first implemented, the
first thing people naturally try is to get around the filter by changing the attachment file
extension to that of a file type allowed. This transforms an attachment based email filter
from a useful tool in improving security, privacy, and resource use into a mild annoyance
to those who wish to bypass it.

File Type Detection with Magic Bytes

A more sophisticated method of file type detection uses what are referred to as “magic
bytes”. The magic bytes are specific to binary files and rely on matching signatures that
vary in length from two to 46 bytes in file headers. Some files also have signatures in
their tails or in other places. Many graphics formats, “.bmp”, “.jpeg” and others have
color pallets with specific structures. The pallets are associated with particular encoding
methods, and thus, identify file type. There are several hundred file types for which
magic bytes are defined and there are multiple lists of magic bytes, although they are not
always consistent.

Additionally, magic byte techniques may give information regarding the tool and/or the
tool’s version used to produce the file. For example,

09 02 06 00 00 00 10 00 B9 04 5C 00 and
09 04 06 00 00 00 10 00 F6 05 5C 00

are both Microsoft “.xls” files with the first produced by Excel v2 and the second by v4.

Interestingly, in files “captured in the wild” we have found files (9 out of 474 in our test
sample) that have jpeg file extensions, behave as jpeg files with respect to common
viewers, but do not conform to usual magic byte conventions.

Magic bytes do not always give a very specific answers, for example 4D 5A are the
magic bytes for executable files and is commonly used by “.exe”, “.com”, “.386”, “.ax”,
“.acm”, “.sys”, “.dll”, “.drv”, “.flt”, “.fon”, “.ocx”, “.scr”, “.lrc”, “.vxd”, “.cpl”, and
“.x32” file types.

The UNIX file() command uses magic bytes as one mechanism to determine the character
set (ASCII, Unicode, EBCDIC, etc.), whether a file is executable, whether it is a binary
data file, along with other characteristics. In UNIX, the magic numbers can generally be
found at /usr/share/file/magic.mgc [8].

How Magic Bytes Work

Magic bytes are typically the first couple of bytes in a file. Since there are no standards
for what a file can contain, the creators of a new file type will usually include something
to uniquely identify files of their type. For example, in 1986 a company called
PKWARE invented the ZIP file format for compressing files [9]. Since then, the letters
“PK” have been at the beginning of every “.zip” file in order to identify it as a file in the

ZIP file format. Now, even though many different types of software work with “.zip”
files, the first two bytes remain “PK” to follow PKWARE’s original standard.

Checking the magic bytes of a file is a little slower than just checking the file’s extension,
because the file must be opened and a small number of bytes must be read. Once the
bytes are read, they can be compared to what is expected. If a file’s extension is “.zip”,
then the first two bytes of the file must be read. If the bytes are anything other than
“PK”, the file is flagged as suspicious.

Table 1 shows a small list of file types with their magic bytes at the beginning and
sometimes at the end of the file. Figure 1 shows a hex view of a typical “.wav” sound
file. To verify an unknown “.wav” file, read in the first 12 bytes of the file, then see if it
matches the pattern “RIFF????WAVE” where “?” could be any byte value.

Table 1: A list of common file types and their magic bytes. If the bytes happen to be
alpha-numeric, they are enclosed in quotes for readability.

File Type Header Magic Bytes Footer Magic Bytes
RTF “{\rtfl\” “}}”
PDF “%PDF-<version>” “%%EOF” plus optional

CR/LF
JPG FF D8 None
GIF “GIF87a” or “GIF89a” None
PNG 89 50 4E 47 0D 0A 1A 0A None
WAV “RIFF” plus “WAVE” at

offset 0x08
None

ZIP “PK” None
EXE/DLL/SCR etc. 4D 5A None

Figure 1: A hex view of the contents of a typical “.wav” file. The magic bytes are in red.

Problems with using Magic Bytes for File Detection

Magic bytes are not without their problems. For file type detection, magic bytes have one
major flaw: they only work on binary file types, and only if those file types do in fact
have magic bytes associated with them. This means that file type detection based on
magic bytes can only be performed if the file is of a certain type, leaving a large number

of files that would have to be classified as unknown. This can be very problematic when
one considers the risks associated with ignoring detection of ASCII based files.
Malicious scripts are a major security threat to any Linux or Windows system, and
simply ignoring C++ files leaving a software development station over email may be an
expensive oversight.

A second problem associated with magic bytes is that they are not an enforced or
regulated aspect of file types. Often the developer of a new file type uses their initials as
the magic bytes; for example, “PK” are the initials of the PKWARE’s founder Phil Katz,
thus they are Phil Katz’s magic numbers. Also, ".exe” files start with 4D 5A or “MZ”
which are the initials of the file format designer, Mark Zbikowski [10]. While some
formats specify headers that can be used as magic bytes, other magic bytes come simply
from de facto standards, i.e. “Well, everyone else throws these bytes in this file type, I
guess I should too.” The problem is that some programs will not follow the standards
when creating or editing files or the developers may never have known of such standards
to begin with.

Adding to the problem of magic bytes being a soft standard, if in fact a standard at all, is
the fact that many sources of magic byte information do not agree 100%. In our work we
came across several tables that claimed to be the definitive magic byte compilation, but
not only were there omissions of file types from some that were covered instead by
others, but the varying tables disagreed on what the magic bytes were for certain file
types. In general, the information would not be contradictory so much as of varying
degrees of specificity. An example of this would be some of the listed magic bytes for
jpeg files. While [11] states that the magic bytes are FF D8 FF, [12] lists the .jpg magic
bytes as either FF D8 FF FE 00 or FF D8 FF E0 00. As previously stated, the main
difference is that of specificity.

This raises an interesting problem, if a file of file type ‘A’ can be opened and edited by
all applications that deal with file type ‘A’, but the file lacks the standard magic bytes
that file type ‘A’ files usually have, what is to be done?

When using magic bytes for file type detection, it is possible that a false positive will
occur simply due to chance. The magic byte scheme of bitmaps is that the first two bytes
are 42 4D, which is “BM” in ASCII text. If all character combinations were equally
probable, this translates into a 1/65536 chance that a non-bitmap file with the first two
bytes being randomly selected would test positive for being a bitmap if magic byte based
file type detection is used. While this may seem like a small chance, when one considers
the sheer number of file types and files in circulation, it is clear that this is a potential
problem. It is interesting to note that a text file that contains nothing more than “BMW’s
are good cars.” would be flagged as a bitmap by magic byte based detection. It should be
noted that the possibility of a chance based false positive drops off quickly as the number
of magic bytes examined increases. Using three magic bytes results in a 1/16777216
chance and using four magic bytes results it a 1/4294967296 chance, but it is the file type
itself that dictates how many magic bytes can be used.

In addition to other problems with magic bytes, they are not immune to being spoofed
intentionally to defeat file type detection. Although more effort must be taken to spoof
magic bytes than an extension, a simple hex editor and knowledge of what magic byte
conventions are is all that is required. Altering magic bytes of a file does not disturb its
functionality, so it is possible to create an mp3 that would appear to be a jpeg in an
attempt to thwart a magic byte based mp3 filter, and not even have to change the magic
bytes back to the original configuration in order to listen to the song.

File Type Detection using Distribution of Characters

A third method that may be used to help verify file type is to examine the distribution of
ASCII values in a file. The method that is used is to tally the distribution of each ASCII
value in a file is called a histogram method [2, p192]. This is used for checking different
types of character-based files, but also may be used on all or parts of binary files. A
histogram, unlike the previous two file detection methods, could reveal that “normal.txt”
is actually a malicious JavaScript instead of a normal text file.

A histogram is made by reading the contents of a file, and counting the number of times
each ASCII character occurs. Normal text consists of all the letters of the alphabet,
numbers, spaces, some symbols and punctuation, and the ASCII representations of tab
and enter. Figure 2 shows a normal text file, which is the story of Captain Midnight.
The two bars on the left represent the enter key (CR and LF), the highest single bar which
extends out of the picture is the space, and the section on the right are the lower case
alphabet. The highest bars in the lower case alphabet are the most common letters in the
text file: ‘a’, ‘e’, ‘i’, ‘n’, ‘o’, ‘s’, and ‘t’. Many of these letters correspond with the list of
most commonly used letters in the English language. Figure 3 shows a C++ file, which
has an unusually high number of symbols like ‘(‘ , ’)’, ‘{‘, ‘}’, ‘[‘, ‘]’, ‘_’, ‘*’, ‘+’,
‘=’, and ‘;’ and tabs. All of these symbols are common in code files and scripting
languages like JavaScript. This technique is not limited to text files, some binary files
have easy to spot patterns as well, like the “.wav” file in figure 4. The peak ASCII
character is 128, which is considered to be silence (or low decibel samples) in wave file
data.

Figure 2: Histogram of the character occurrences in the story of Captain Midnight. Note
that the peaks represent high frequency characters in the English language in addition to

linefeed, carriage-returns and spaces.

Figure 3: Histogram of the character occurrences in a C++ file. Note the unusually high

number of non-alphabetic characters. Note that there are pairs of corresponding
characters that have equal occurrences.

Figure 4: Histogram of a .wav file. The peak is from low-decibel samples.

Problems with using Distribution of Characters for File Detection

Like all methods, file type detection based on distribution of characters has its flaws.
Among these flaws are that some file types do not have a characteristic distribution, and
the risk of false alarms due to files with unique or irregular content. The most
challenging aspect of file type detection based on character distribution is that of
computational efficiency.

In most instances, file type detection must be relatively quick. In attachment scanners
that may have to filter through an entire organization’s incoming email in a timely
manner, file type detection must be fast or it will hinder daily business. Virus and adware
scanners are required to scan through more and more files and hard drive sizes and the
amount of media stored by individuals increases, requiring the file type detection to be
efficient if these utilities are to remain useful. Automated steganography is especially
reliant in quick file type detection, as it needs to check unobtrusively each file as it is
created on a system. File type detection based on character distribution can be
inappropriate for such uses since it must open and scan every file, while keeping statistics
on the file as it scans.

Our Work

The end purpose of this work is to develop a front-end processor for a steganalysis
framework. This paper describes our design and implementation of a file type verifier.
This work is supported by U.S. Air Force Research Laboratory, Phase I STTR – FA9550-
04-C-0109. File type detection is a necessary first step in this process, which enables the
most likely steganalysis techniques to be tried first.

The issue with the use of file type classification in a steganalysis system is that
individuals who are sophisticated enough to try hiding a message through the use of
steganography certainly have the knowledge to disguise the file types.

Current Work

Our current file type detection scheme is based on a combination of extension and magic
bytes, with magic bytes having the most significance. We utilized magic bytes for a
variety of reasons. One reason we focus on magic bytes for our file type detection needs
is the balance it provides between speed of classification and difficulty to spoof. We
found that doing a full byte distribution analysis would be unacceptable for an automatic
process that would need to monitor and scan all files as they were created, as automated
steganalysis does. We decided early on that merely relying on the extension was ruinous,
due to not only the simplicity of spoofing but by the fact that we would be limiting
ourselves to Windows, and automated steganalyis may be put into service on individual
workstations, which may or may not be running Windows, or on network servers, which
often run Linux/Unix.

In our implementation, we created plug-ins for specific file types. Each was designed to
verify a specific type of file by reading and comparing magic bytes. Instead of reading in
the maximum number of bytes that could be magic bytes and figuring out what the file
type is, we started off by trusting the file’s extension, and passed the filename to the
corresponding plug-in that could handle it. If the file’s magic bytes matched what was
expected, it was assumed to be ok. If not, it was flagged as suspicious.

At the moment we are accepting certain downfalls of relying heavily on magic bytes,
such as not being able to verify ASCII files and the fact that they can still be spoofed.
We are however looking into ways to improve our current work, and create even more
robust and reliable file type detection.

Future Work

Possible ways to improve our current file type detection method would be to mitigate the
resource impact of byte distribution scanning, the use of string searches to find strings
that are often, but not always, embedded in certain file types, and the possible use of
machine learning in file type detection.

Finding methods to make byte distribution scanning fast enough to be used would greatly
improve file type detection capabilities. One possible way would be to sample a random
selection of a file’s bytes and verify the profile of the random selection against known
signatures. This would increase speed while decreasing certainty of results, making it
crucial that the correct sample size be selected to balance these factors.

Certain files can sometimes contain strings that indicate what tools were used on the file,
what versions, and other information that could possibly indicate file type. By examining
different files we have found strings that tag files on which operating system the file was
created, what programs created the file, and in the case of digital photos what camera was
used to take the picture. While these are not necessarily hard and fast indications of file
type, they are valuable clues and could possibly be utilized to facilitate more flexible file

type detection. Unfortunately scanning a file for strings is an even slower process than a
byte distribution analysis, and offers far less benefit.

One method that may hold promise for file type detection is the use of machine learning
techniques. Supervised training could be used to construct a file type classifier, but
several questions remain. One question would be what method of machine learning
would be flexible enough to learn new file types as they became important, and not forget
how to classify the previously learned file types; one way around this may be to train
many smaller more specific file type detectors. Another issue with machine learning is
the question of what the feature vector should be. If one large classifier was utilized the
vector would need to contain information useful for differentiating all types, while using
many smaller file type classifiers would mean each file type would need to be examined
as to what the useful features are. Machine learning is both the most promising and most
challenging method of file type detection, and will no doubt be investigated in the future.

Summary

File type identification is a difficult but increasingly important task. SPAM email filters,
virus scanners, adware/spyware blockers, and steganalysys detectors are generally file
type specific and may need accurate file type knowledge to work effectively. File type
detection using only the file extension, which is commonly used in all the previously
mentioned programs, may not be enough. By simply renaming the file, the items that are
blocked, filtered, or scanned are usually passed through. Detection with the use of magic
bytes provides a much more accurate way to prove that a file is what it claims to be.
However, magic bytes aren’t standardized and reliable, and can trigger some false alarms.
Also, magic bytes only work with most binary files, which leaves out the possibility of
detecting potentially malicious text-based script files. File type detection using
distribution of characters has the potential to classify text-based files, but is too resource
intensive to be used on an increasingly large number of files in a timely manner.

References

[1] http://www.cms.hhs.gov/hipaa/hipaa2/enforcement/default.asp#penalties

[2] Cole, E., Hiding in Plain Sight, Wiley, Indianapolis, 2003.

[3] http://www.thebulletin.org/article.php?art_ofn=mj01auer

[4] http://www.cryptek.com/Downloads/corporate.pdf

[5] http://www.securitymagazine.com/CDA/ArticleInformation/
features/BNP__Features__Item/0,5411,77194,00.html

[6] McNamara, J., Secrets of Computer Espionage, Wiley, Indianapolis, 2003.

[7] http://ask-leo.com/how_can_i_send_someone_an_attachment_if_its
_blocked_by_their_copy_of_outlook.html

[8] http://www.die.net/doc/linux/man/man1/file.1.html

[9] http://www.pkware.com/company/background/

[10] http://en.wikipedia.org/wiki/Magic_number_%28programming%29

[11] http://filext.com/detaillist.php?extdetail=JPG

[12] http://www.techpathways.com/uploads/headersig.txt

Acknowledgements

The end purpose of this work is to develop a front-end processor for a steganalysis
framework. This paper describes our design and implementation of a file type verifier.
This work is supported by U.S. Air Force Research Laboratory, Phase I STTR – FA9550-
04-C-0109.

