
Using Thermal Sensors to Perform CPU Scheduling in a
WWW Based Distributed Data Base Application

Dennis Guster, Christopher Brown, Charles Hall and Brittany Jansen
Business Computing Research Laboratory

St. Cloud State University
St. Cloud, Minnesota, 56304
dcguster@stcloudstate.edu

Abstract

Before applications became web applications (pre-http), the maximum number of
potential users was limited to the size of the private network connected, generally a
maximum value in the thousands of users. With Internet web applications, it is not
unreasonable to expect a value (of potential users) in the millions of users. To support
web application performance scalability, it is important to optimize the data storage and
retrieval methodology. This study looked at the potential of using scheduling based on
the temperature of each CPU in a database cluster, with the assumption being the coolest
processor was the least busy. Data was collected using the same workload computer test-
bed and workload generation software used by [1]. Only this time the distribution method
was based on thermal sensing. The results indicated that the delay was reduced by a
factor of about 10 when compared to the most efficient algorithm used by [1]

mailto:dcguster@stcloudstate.edu

1 Introduction

Before applications became web applications (pre-http), the maximum number of
potential users was limited to the size of the private network connected, which was
generally a maximum value in the thousands of users. With Internet web applications, it
is not unreasonable to expect a value (of potential users) in the millions.

To support web application performance scalability, it is important to optimize stored
data, which can be extracted, processed and forwarded to a web client. Hard drive
technology, based on mechanical technology, is the slowest part of the information
retrieval. With state of the art disk drive technology, adequate performance cannot be
obtained with the most intensive web applications involving the “millions of hits
scenario.”

Therefore, given this “millions-to-one” mechanical bottleneck, it is reasonable to
investigate optimization by storing data on multiple disks and distributing them across
multiple devices. This methodology suggests a reduction of data access time; as [5]
shows, there was an improvement of throughput by ten percent and a decrease in
workstation response time by a factor of 14 when distributed databases were employed.
Further, it appears that there are three variables to consider while trying optimizing a
distributed data within a WWW application.

The first variable acknowledged was workload intensity. Intensity increased the need to
utilize a form of a distributed database. [9] determined that distributed databases offer
significant performance advantages, if the system was large enough, in terms of users. [9]
found it takes about 40 users to reach a performance threshold.

The second factor was the number of distributed database nodes. As expected, adding
additional of nodes reduces access time. However, [8] states a point of diminishing
returns occur when the communication overhead among the many nodes negates the
performance effect of adding additional nodes.

The third variable acknowledged was the algorithm used to distribute the inquiries across
multiple nodes. In theory, a symmetric algorithm, one that provides an equal chance of
any given inquiry landing on any specific node, would be expected to offer the most
promise.

There is much agreement that optimizing the allocation method is critical to the success
of any distributed processing endeavor [3], [10], and [16]. Although various operating
system or middleware level algorithms have been employed successfully in all cases,
there is the problem of delay caused by the processing load and internal overhead of that
database host [7], [15], and [1]. In other words, a distributed database host must service
requests and keep track of its utilization and inform the distribution host of its
availability. Logically, this a small task that can be given a high priority but it must still
contend for an interrupt and fight for a time slice with the database application and other

 1

operating system level tasks. Given that the typical distribution model uses a single point
of control to allocate the requests among the distributed nodes, any method that bears
promise in reducing the communication delay back to the distribution control host merits
investigation [4].

The idea of obtaining the CPU usage directly from some source other than the operating
system is not new. Using power consumption as a means of determining CPU utilization
has been used for some time [17] and [11]. Monitoring power consumption at the power
supply level is easily accomplished, but monitoring it effectively at the CPU level would
quite possibly require a specially designed motherboard. Therefore, if the goal is to test a
sensing device using standard off the shelve computers, the concept of monitoring heat at
the CPU level could be easily implemented by simply putting a thermal sensor in the heat
sink of the desired CPU(s). Although little has been done directly in using thermal
sensors to schedule database inquiries in a distributed environment, thermal management
has been used to try to optimize CPU efficiency [13], [6], and [14]. Further research has
been undertaken to confirm that CPU temperature is related to CPU utilization [12].
Therefore, based on the success of this previous research, it appears that scheduling
database inquiries in a distributed environment by thermal activity merits investigation.

As previously stated, operating system based algorithms have been successfully
employed, and the efficiency they produce can serve as a benchmark from which to
evaluate the effectiveness of the thermal methodology. In fact, in some cases, the delay
back to the client after a database lookup has been reduced dramatically. Specifically, [1]
found that with a load-balancing algorithm end user delay could be reduced from 4.8 to
.05 milliseconds. This is quite an improvement and certainly very effective at the load
offered (200 www session across 4 processing nodes). However, in applications with
greater loads and database complexity, there still is a need for further optimization of the
distribution methodology. To ascertain the potential of using thermal scheduling, data
was collected using the same workload computer test-bed and workload generation
software used by [1], only this time the distribution method was based on thermal
sensing. The logic was that the coolest processor was assumed to be the least busy and,
therefore, that was where the next inquiry was directed.

2 Methodology and Results

Research Questions
This paper explored the effectiveness of a distributed database under a variety of
conditions by conducting experiments, using different combinations of variables listed
above. Specifically, the following questions were researched:

1. How does the workload intensity influence the need and performance of
distributed database applications?

2. How does the number of database nodes affect the data access time?

 2

3. How does the thermal scheduling algorithm compare to the most effective
algorithm (load balancing) used by [1] when assigning a given query to a
specific database node?

These questions were modified to provide three null hypotheses, which can be tested
through experimentation.

H1. Workload intensity has no affect on the retrieval time of records from a
distributed database and, hence, on the delay to the originating client.
H2. The number of nodes a database is stored upon has no affect on response time
to the originating client.
H3. The algorithm used to distribute requests to a given distributed database node
has no affect on the delay to the originating client.

To collect data to test these hypotheses, a database test bed was devised in which the
workload was simulated for any number of concurrent client browser sessions. The
distribution algorithm was varied and the number of nodes on which the database was
distributed varied from one to four. A drawing of this test bed appears below as Figure 1.

Figure 1:

The actual collection agent within this environment was a packet sniffer process
generated by TCPDUMP. This collection agent trapped data from each packet generated
by the experimental tests. The most effective software based URL from [1] was the load
balanced (http://199.17.59.65/page/?function=load). The apache server would then
redirect the output based on the predefined algorithm (either thermal or load balanced) set
up for each method. The following variables appeared in each packet record: time
stamp, source Media Access Control (MAC) address, destination MAC address, size of
the packet, source network.node.port address, and destination network.node.port address.
This data, once processed, provided metrics in the following categories: delay to the
client, data throughput, and data intensity. A high-end processor running Linux generated

 3

http://199.17.59.65/page/?function=load

the workload. The software used was Siege, which is able to generate web traffic streams
of varying intensity. For the experiments run herein, the traffic of eight consecutive
groups of 50 and 400 clients were generated in two separate tests. The client requests
were forwarded to a Linux web server via a 100 Mbps Ethernet network. The web server,
in turn, made the disk Input/Output (I/O) requests to either one, two or four database
servers running a MYSQL database, which consisted of a single indexed table having 29
fields containing 11,552 records. In the case where multiple database servers are used, the
same database was replicated to each database node. Therefore, the data request could be
filled by any one of the four potential databases and return the same results.

Different methods were used to determine which of the database servers (if multiple db
servers were used) would receive any given request. In the thermal method, a temperature
sensor was placed in the heat sink of each database processor node and, in turn, plugged
into a control panel. The control panel then fed the temperature data into the distribution
server, which simply assigned the next incoming inquiry to the node with the lowest
temperature. The load balancing method monitored the operating system on each
potential database node to ascertain its current load in real time. Dbservers under heavy
loads, which were unable to report in a timely interval, were assumed to be at 100%
utilization. Selection was based on the lowest utilization currently reported. The data
collected was reported in two Tables.

Table 1:

8 Consecutive Iterations of 50 Concurrent Sessions.

Query
Distribution

Type
Sequential
Iterations

Server
Nodes Clients

Average
Delay (ms)

Throughput
(bytes/s)

Packet
Intensity

(packets/s)

N/A 8 1 50 2.07193316 92758.467 241.321
Thermal 8 2 50 0.00517468 911275.131 8669.450
Thermal 8 4 50 0.00466387 982233.329 11266.901

Load Balanced 8 2 50 0.17195826 252105.315 2907.682
Load Balanced 8 4 50 0.08090560 522526.965 6180.042

The data was collected at the 50 client level is displayed in Table 1. At the 50-client
level, each test was performed once per method and dbserver node configuration. As the
session load increased, the performance difference was amplified, which suggests a
higher performance return per additional dbserver node.

• The first column describes the database node allocation method. This concept is
not applicable when only one dbserver is used.

• The second column describes the number of times that the simulated 50 clients
generated a request stream.

• The third column depicts the number of database servers used.
• The fourth column reports the number of clients generating the workload.

 4

• The fifth column reports the average delay back to the client in filling the request.
• The sixth column depicts the throughput in bytes per second.
• The last column reports the intensity of packet traffic.

Table 2:

8 Consecutive Iterations of 400 Concurrent Sessions.

Query
Distribution

Type
Sequential
Iterations

Server
Nodes Clients

Average
Delay (ms)

Throughput
(bytes/s)

Packet
Intensity

(packets/s)

N/A 8 1 400 4.20071933 23200.616 119.04
Thermal 8 2 400 0.00687468 1103245.131 10254.45
Thermal 8 4 400 0.00486387 1217343.329 11266.90

Load Balanced 8 2 400 0.43814796 99091.412 1141.16
Load Balanced 8 4 400 0.09072802 474901.359 5510.97

In all cases, delay decreased as the number of dbservers was increased. However, the
methods were affected differently as the number of concurrent sessions was increased
from 50 to 400. The delay for the single server and the load balanced algorithms
approximately doubled whereas only slight increases appeared in the thermal method
data. Both the thermal and the load balanced methods greatly reduced delay, but the
thermal method further reduced delay, beyond the load-balanced method, typically by a
factor of 20 to 30. A corresponding increase in packet intensity and bytes transferred was
also observed in favor of the thermal method. In regard to bytes transferred, the increase
was from 4 to 10 times greater at the 400 concurrent session levels.

3 Discussion, Conclusions and Recommendations

In all cases the three null hypotheses tested through experimentation can be rejected.

H1. Workload intensity has no affect on the retrieval time of records from a
distributed database and, hence, on the delay back to the originating client. In all
cases the corresponding delay increased when the number of concurrent clients
was increased from 50 to 400.
H2. The number of nodes a database was stored upon had no affect on response
time to the originating client. Both distributed algorithms improved the response
time to the client.
H3. The algorithm used to distribute requests to a given distributed database node
had no affect on the delay to the originating client. The thermal method definitely
exhibited less delay than the load-balanced method.

Given the results above, it appears from the data collected that the thermal methodology
can, in fact, offer a higher degree of scheduling efficiency when compared to [1] load
balancing algorithm. In fact, the parameters for both delay and throughput were improved

 5

upon. This is an encouraging finding, but it must be replicated several times before it can
be totally accepted. Setting up the test-bed and collecting this data was difficult and time
consuming. The sophistication by which the temperature probes were mounted coupled
with lack of control of room temperature and humidity, which can detract from the
potential reliability of this experiment. Further, the load-balanced data was obtained first
and then test-bed was dismantled. Although every effort was made to recreate the test-
bed in every detail for the collection of the thermal data, the reliability would have been
better if exactly the same test-bed was used in each case.

In terms of scaling, it would be interesting to see how each method fares as additional
database nodes are added to the experiment. Further, although the workload level of 400
concurrent sessions is quite intense, it would be worthwhile to increase that value and
determine whether or not the current observed performance ratios hold true. Also, it
would useful to replicate these experiments with other types of computer hardware and
networks of higher speed.

Last, besides offering a higher degree of scheduling efficiency, the thermal solution
would reduce the workload on the database node operating system; however, the thermal
solution would create additional hardware cost and complexity. More than likely, given
the added efficiency, the cost could be easily justified, but the complexity could be
problematic, from a reliability perspective as well as the cost of trained personnel to
support it. Further, if sophisticated climate control was required to ensure the accuracy of
the sensors, then that cost may prove to be a limiting factor as well. Although the
preliminary results obtained herein are encouraging, much work is still needed to
ascertain the reliability, practicality and efficiency of the thermal method.

References

[1] C. Brown, Analysis of Three Database Distributed Algorithms, St. Cloud: St.
 Cloud State University, 2005.

[2] Chieuh, H., J. Draper and J. Choma, "A Programmable Thermal Management
 Interface Circuit for Power PC Systems," Micro Electronics Journal, no. 32, pp.
 875-881, 2001.

[3] A. Dogan and F. Osgunger, "Matching and Scheduling Algorithms for
 Minimizing Execution Time and Failure Probability of Applications in
 Heterogeneous," IEEE Transaction on Parallel and Distributed Systems, vol. 13,
 no. 3, pp. 308-323, 2006.

[4] F. Dong and S. Akl, Scheduling Algorithms for Grid Computing: State of the Art
 and Open Problems Technical Report, Kingston: Queen’s University, 2006-504.

 6

[5] S. Elnikety, J. Tracey, E. Nahum and W. Zwaenepoel, "A method for transparent
 admission control and request scheduling in e-commerce web sites," Proceedings
 of the 13th International Conference on World Wide Web, pp. 276-286, 2004.

[6] M. Elnozahy, M. Kistler and R. Rajamony, "Energy-Efficient Server Clusters,"
 Proceedings of the Second Workshop on Power Aware Computing Systems,
 2002.

[7] D. Guster, Safonov P., Hall C. and R. Sundheim, "Using Simulation to Predict
 Performance Characteristics of Mirrored Hosts Used to Support WWW
 Applications," Issues in information systems, vol. 4, no. 2, 2003.

[8] D. Guster, R. Sultanov, M. Nordby and R. Sundheim, "Using Distributed
 Processing to Enhance Performance Characteristics of Hosts Used to Support
 WWW Applications," International Journal of Business Research, vol. 6, no. 2,
 pp. 67-71, 2006.

[9] V. Kanitkar and A. Delis, "Distributed Query Processing on the Grid," IEEE
 Transactions on Computers, vol. 51, no. 3, pp. 269-278, 2002.

[10] S. Kartik and C.S.R. Murthy, "Task Allocoation Algorithms for Maximizing
 Reliability of Distributed Computing Systems," IEEE Transactions on Computers,
 vol. 46, pp. 719-724, 2002.

[11] J. Luo and N. K. Jha, "Power-Conscious Joint Scheduling of Periodic Task
 Graphs and Periodic Tasks in Distributed Real-Time Embedded Systems," Proc.
 International Conference Computer-Aided Design, pp. 357-364, 2001.

[12] M. Naghedolfeizi, S. Arora and S. Garcia, "Performance Analysis of a High-End
 CPU Under a Heavy Computational Load and Varying RAM Amount Using
 Thermal Imaging Techniques," Autotestcon IEEE, pp. 574-577, 2005.

[13] E. Pinheiro, R. Bianchini, E.V. Carrera and T. Heath, “Load Balancing and
 Unbalancing for Power and Performance in Cluster-Based Systems,” Proceedings
 of the Workshop on Compilers and Operating Systems for Low Power, 2001.

[14] K. Rajamani and C. Lefurgy, “On Evaluating Request Distribution Schemes for
 Saving Energy in Server Clusters,” Proc. IEEE International Symposium on
 Performance Analysis of Systems and Software, 2003.

[15] P. Safonov, D. Guster, R. Sultanov and N. Krivulin, “Is Deployment of
 Distributed Processing for Business Applications a Sound Management Decision:
 Performance Analysis and Simulation,” Journal of Information Technology
 Management vol. 16, no. 3, 2005.

 7

[16] S. Shatz,, J. Wang and M. Goto, “Task Allocation for Maximizing Reliability of
 Distributed Computer Systems,” IEEE Trans. Computers, vol. 41, no. 9, pp. 1,
 156-168, 1992.

[17] C. Woodside and G. G. Monforton, “Fast Allocation of Processes in Distributed
 and Parallel Systems,” IEEE Trans. Parallel & Distributed System, vol. 4, no. 2,
 pp. 164-174, 1993.

 8

	[9] V. Kanitkar and A. Delis, "Distributed Query Processing on the Grid," IEEE Transactions on Computers, vol. 51, no. 3, pp. 269-278, 2002.

