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Abstract 
 
Asymptomatic screening methods are import to lower the mortality rate of breast cancer 
patients. Technologies available in clinics have weaknesses in terms of sensitivity and 
specificity. Microwave imaging technique uses the apparent dielectric property contrasts 
between different breast tissues at microwave frequencies and is a prospective direction 
to find small tumor at their early stage. Microwave tomography falls in one category of 
microwave imaging technique. There are two main components in microwave 
tomography to detect abnormalities in breasts: Genetic Algorithm (GA) and Finite-
Difference Time-Domain (FDTD). Both GA and FDTD are time-consuming, but, they 
are data-parallel in nature. In this paper, we have designed a parallel framework for 
microwave tomography: parallel GA combined with parallel FDTD. The algorithms are 
implemented on distributed memory machines running MPI. It achieves a result of 
finding a 1.5cm tumor in a breast phantom of 12cm in diameter, with a speedup of 6.25 
using 16 processors. 
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1 Introduction and Motivation 
 
Breast cancer is the second leading cause of cancer deaths in women today and is the 
most commonly diagnosed cancer in women. In North America, an estimated 202,044 
cases were diagnosed and 51,184 patients died from the disease in 2000 [9]. A promising 
way to lower the mortality rate is to detect the tumor at its early stage, followed by 
effective treatments. 
 
Currently, the most common methods for breast cancer detection are regular physical 
examination by women themselves or their doctors, and X-ray mammogram screening 
[21]. The disadvantage of physical examinations is that it is a subjective-prone process. 
Human beings are easily negligible on the small lumps, which may be the first sign of 
asymptomatic tumors. Compared to physical examinations, X-ray screening raises the 
possibilities to find small lumps by expert radiologists, but it has its own weaknesses. The 
process is uncomfortable for patients because of the compression on the breast. It also 
poses the patients to possibly harmful ionizing radiation, which is recognized as a cause 
of cancer. Besides, the resolution of this technique is limited because the absorption of X-
rays is similar for a large number of tissues [12]. Thus, the contrast of different tissue 
imaging is low, resulting in approximately 20% of missed breast cancer detection and 
leading to low sensitivity rate. Sensitivity is defined as the rate at which tumors are 
detected [26]. 
 
There are other technologies for breast cancer detection as a second aid to X-ray 
screening: ultrasound imaging and Magnetic Resonance Imaging (MRI). Ultrasound 
imaging removes the ionizing radiation in X-ray screening, but it does not solve the 
problem of low resolution and cannot detect small tumors less than 5mm [21]. For this 
reason, MRI is a suitable choice because MRI has high sensitivity at detecting tissue 
abnormalities. But, MRI cannot distinguish malignant tumors from benign tumors, which 
may increase false positive rate and lead to unnecessary biopsies. This drawback makes 
MRI a technique with low specificity rate, which is related to false positive error. Also, 
an MIR system is too expensive and not too many systems can be installed in clinics. 
 
A comparatively more recent technology is microwave imaging (MWI) for breast cancer 
detection [7, 8, 11, 15]. It reconstructs the material properties of the breast by measuring 
the scattering of the electromagnetic signals posed on the breast. It is an application of the 
inverse scattering problem. The inverse scattering problem determines the characteristics 
of an unknown object (its shape, internal material profile, etc.) from measurement data of 
radiation from the object [22]. 
 
The feasibility of MWI technique relies on the high contrasts between the dielectric 
properties of tumors and those of normal breast tissues at microwave frequencies [24, 
28]. Typically, tumors have a permittivity 10-20% higher than that of normal tissues. 
 
Microwave imaging can be classified into active imaging technique and passive imaging 
technique [6]. The difference between them is whether low level microwave radiation 
given off by all objects in the natural environment. There is no transmitter in passive 
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imaging system. Active imaging technique, on the other hand, transmits electromagnetic 
pulses in the direction of object of interest and records the origin and strength of the 
backscatter received from objects. Active imaging technique is more useful in breast 
cancer detection and two approaches have been developed: the microwave tomography 
(MT) [18, 19] and the radar microwave imaging [6]. As an example, confocal microwave 
imaging falls in the radar imaging category and reconstructs the breast by synthetically 
focusing reflections from the breast [6]. 
 
Confocal microwave imaging [6] reconstructs the breast by synthetically focusing 
reflections from the breast. Although it can find small tumors, it does not attempt to 
reconstruct the exact permittivity profile of the breast. Its emphasis is more on detecting 
the strong scattering center that may be tumors. This assumption leads to its limitations 
on breast imaging because a breast is an object with inhomogeneous materials, consisting 
of fatty tissues, glandular tissues, fibrous tissues, and possible malignant tumors. On the 
contrary, MT is a process during which the image reconstruction process involves 
iteratively matching measured and forward computed data [18, 19]. The process 
continues until the calculated data converge with the measured data. The output of the 
forward computing process is the solution to the inverse scattering problem incurred in 
microwave scattering and represents the dielectric property profile of the breast. 
Computed data are based on numerical techniques and a model of the object with 
estimated material properties. In this paper, we consider MT. 
 
A suitable numerical technique is important to MT and should be efficient as to 
calculation time and be accurate in terms of the restored unknown object. There are two 
components in MT: Genetic Algorithm (GA) and Finite-Difference Time-Domain 
(FDTD). FDTD is normally selected in solving inverse electromagnetic scattering 
problem as in this application because it can efficiently model an inhomogeneous object 
of arbitrary shape [29]. GA is used to find the globally optimized solution to the inverse 
scattering problem in reasonable amount of time. The paper develops a parallel 
framework for MT involving GA and FDTD to breast cancer detection on a network of 
computers.  
 
The paper is organized as follows. Section 2 focuses on the framework of MT, illustrating 
how GA and FDTD interact with each other. Section 3 extends GA and parallel GA for 
the application. Section 4 introduces FDTD in general, a sequential FDTD and a parallel 
FDTD for our application. In section 5, the implementation environment of our parallel 
framework is given, including the runtime comparison. Conclusions are presented in 
section 6. 
 
 
2   A Parallel Framework for Microwave Tomography 
 
GA and FDTD are the two key components of MT. The efficiency of GA and FDTD is 
vital to its applicability clinically. FDTD algorithm is essentially computation-intensive, 
but shows intrinsic characteristic of data parallelism. Thus, a parallel FDTD (PFDTD) is 
an important approach to improve the efficiency. MT is an application of the inverse 
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scattering problem, and the profile of the breast characteristics is unknown. Different 
presumed profiles need to be tried as the input of FDTD. In breast cancer detection, 
combinations of the different tumor types (also including non-tumor scenario) at different 
positions must be calculated by FDTD to determine which combination leads to the 
closest FDTD calculation result with the measurement. Therefore, the detection problem 
involves a global optimization problem by searching all profiles. The optimization 
problem can be defined in equation 1. i ranges from 1 to 4, indicating that plane waves 
are impinged from four directions: east, south, west, and north. θ represents different 
angles of the observation points. E tmeasuremen

iθ  is the measurement at angle θ using i plane 

wave. EFDTD
iθ  is the calculated data at angle θ using i plane wave. 
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GA is an efficient search algorithm based on principle of natural selection and genetics 
[13]. It is generally able to find good solutions in reasonable amount of time. The profile 
combinations in MT increase dramatically in order to improve the image resolution, the 
sensitivity, and the specificity. Hence, a parallel GA (PGA) is also vital to an efficient 
MT. In MT, GA is first executed followed by FDTD. The output of the GA is required as 
an input to compute FDTD. Therefore, the algorithms in MT work in a synchronous 
manner. However, GA and FDTD by themselves can be parallelized. Therefore, a two-
level parallel framework is designed for MT in breast cancer detection. 
 
There are two parts in the framework: one for PGA and another for PFDTD. A master-
slave approach is used in the algorithm. One master process (PGA master process) is 
used to generate the initial population that consists of different combinations. The initial 
population is divided into subpopulations and dispatched to a number of slave processes 
(PGA slave process). All PGA slave processes evolve their own subpopulations 
simultaneously. Each PGA slave process sends the profiles with highest fitness to a 
number of processes that act as the master process (PFDTD master process). They work 
in parallel on different profiles. The PFDTD master processes in turn dispatch work of 
the calculation to other processes that are called PFDTD slave processes. The PFDTD 
master processes are responsible to collect the final results and communicate with PGA 
slave processes. It is the PGA slave processes that determine whether the PFDTD 
calculation result is close enough with the measurement, thus obtaining the profile of the 
breast and further determining whether a tumor is present.  
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3   GA and Parallel GA for MT 
 
 
3.1 Sequential GA 
 
Sequential GA can be categorized into two kinds of algorithms according to how the 
population is replaced for the next generation [14, 31]. They are steady-state GA (SSGA) 
and generational replacement GA (GRGA). For SSGA, one individual of the population 
is changed at a time. The child individual can be generated by applying crossover on two 
parent individuals selected from the population, or applying mutation on one selected 
parent individual. The newly-generated child individual replaces an individual of the 
population using different replacement strategies to form the new generation. 
Replacement strategies include: replace the worst and replace a randomly chosen 
individual. On the contrary, GRGA replaces the whole population at each generation. 
According to their definition, SSGA appears faster than GRGA although the result of 
SSGA will not be as satisfactory as that of GRGA because SSGA does not explore the 
whole generation as well as GRGA does. 
 
 
3.2 Parallel GA 
 
Parallel GA can be classified into three categories [4]: 

• Global single-population master-slave GA 
• Single-population fine-grained GA 
• Multiple-population coarse-grained GA 

 
The three parallel GAs differ in how the initial population is distributed and how the task 
of GA is distributed. The most important difference between sequential GA and parallel 
Gas is the migration operator that is used only in parallel GA. For example, in a multiple-
population coarse-grained GA, initial population is partitioned into subpopulations and 
are distributed to different processors. Each subpopulation evolves as a sequential GA, 
except that some fittest individuals in one subpopulation are exchanged with those in 
other subpopulation. It is called migration operator. The migration operator has to decide 
on the following parameters: 

• When to migrate between subpopulations; 
• Whom to be migrated to other subpopulations; 
• How many individuals (migrants) in the subpopulation should be migrated; 
• Where to migrate the selected migrants (migration topology). 

 
Based on the manipulation of the migrants between subpopulations, parallel GA can be 
classified as Island Model and Shared Pool Model [5]. In the Island Model, all 
subpopulations evolve independently of each other, except that each subpopulation 
occasionally migrates individuals to other subpopulations based on the migration 
topology. This model is suitable for distributed memory parallel environment. On the 
other hand, in Shared Pool Model, all subpopulations store their best individuals to a 
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shared pool, and replace some of their own subpopulation with individuals stored in the 
pool that come from other subpopulations. This model is more suitable for shared 
memory parallel environment. A parallel SSGA using Island model is shown in 
Algorithm 1.  
 
 
4   FDTD and Parallel FDTD for MT 
 
4.1 Sequential FDTD 
 
FDTD is a popular numerical simulation method to solve problems in electromagnetics. 
It was first proposed by Yee in 1966 [32]. The basic idea is to discretize the 
electromagnetic computational domain into a collection of Yee cells and calculate the 
electric fields (E-fields) and magnetic fields (H-fields) of all cells in Cartesian system. 
There are 6 components in 3D domain: Ex, Ey, and Ez; Hx, Hy, and Hz. An illustration 
of a 3D Yee cell in FDTD is given in Figure 1 [1].  
 
Because FDTD uses central difference, the vector components of E-fields and H-fields of 
Yee cells are spatially staggering in the Cartesian computational domain, meaning that 
each E-field vector is located midway between a pair of H-field vector, and vice versa. 
Furthermore, as H-fields are sampled at a half sampling interval difference than that of E-
fields sampling, E-fields and H-fields are updated in a leapfrog scheme for marching 
forward in time. This implies that E-fields are updated midway during each time-step 
between successive H-field updates, and vice versa. The relationship can be manifested in 
the following equations, which are the solutions to our application. 
 

 
 

Figure 1: A standard Yee Cell for FDTD 
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 Algorithm 1 Parallel SSGA (Steady-State GA) using Island Model 
t = 0; 
if(processor is master processor) 
 initialize P(t); 
 partition P(t) into Pi(t) and distribute Pi(t); 
else 
 receive initial subpopulation Pi(t) from master processor; 
evaluated subpopulation Pi(t); 
for each generation 
 local_search(Xrandom) from Pi(t); 
 for each pair in Xrandom 
  select (x1, x2) from Xrandom; 
  if(r < Pc) 
   Xnew = crossover(x1, x2); 
  else 
   Xnew = mutate(x1, x2); 
  delete Xworst from Pi(t); 
  while(Xnew exists in Pi(t)) 
   mutate(Xnew); 
  add Xnew to Pi(t) to form Pi(t+1); 
 if(migration condition meets) 
  find the destination to migrate to; 
   select individuals to be migrated according to the parameters; 
  send selected individuals; 
  receive individuals from other subpopulation Pj(t); 
  replace individuals with lower fitness in Pi(t+1) with the received 
migrated individuals; 
 evaluate Pi(t+1); 
 t = t+1; 
select the top several number of fittest individuals in Pi(t); 
if(processor is master processor) 
 receive fittest individuals from other processors; output the results; 
else 
 send the fittest individuals in Pi(t); 
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Several preconditions must be met before using FDTD method [29]. Firstly, a 
computational domain must be established on which the Yee cells are based. Normally, 
the computational domain is the physical region over which the simulation will be 
conducted, such as the breast in our application. Secondly, the material of each cell 
within the computational domain must be specified with their permittivity, permeability 
and conductivity. Since FDTD allows the material at each cell to be specified, an 
inhomogeneous object of any shape can be easily modeled. This is the reason that FDTD 
is used in our application since a breast includes fatty tissues, glandular tissues, fibrous 
tissue, and possible malignant tumor tissues. Thirdly, a source must be specified. As in 
active microwave imaging, the property of the pulse sent by the transmitters must be 
considered. Gaussian pulse is used in the application.  
The availability of massive computer resources makes FDTD simulation feasible for 
different applications. But the computational domains must be finite for finite computer 
memory. Therefore, for open region problems such as our application, absorbing 
boundary conditions (ABCs) must be considered. Most popular ABCs can either be 
derived from differential equations (Mur ABC [20], Liao ABC [16]) or by employing a 
material absorber (Berenger ABC [2], which is also called Perfectly Matched Layer 
PML) [25]. 
 
Another critical issue in FDTD is its stability because FDTD is a time-marching 
computational simulation. The time step must satisfy certain preconditions to ensure that 
the simulation result is stable and correct. In our application, the plane waves are 
propagating across discrete cells. The time step must be less than the time for the waves 
to travel adjacent grid points. Otherwise, a nonzero field value of a cell is introduced 
before the wave can reach the cell, violating causality of the simulation system and 
resulting in an unstable and inaccurate output [33]. This precondition is called Courant 
condition.  
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In Figure 2, a 2D computational domain shows the cross section of a dielectric cylinder, 
which can be simulated as the cross section of a breast. Yee cells are represented by 
squares. We assume that a transverse magnetic plane wave along Z axis (TMz) is used 
and the 2D object is placed in X-Y plane [29]. Therefore, there are only 3 components in 
the application: Ez, Hx, and Hy. 
 

 
 

Figure 2: 2D Computational Domain 
 
 
4.2  Parallel FDTD 
 
FDTD algorithm is computationally intensive due to several reasons. The calculation is 
complex as shown in equation (2) to equation (5). The size of Yee cells should be small 
enough such that each cell can be treated as a homogeneous material. The more fine 
grained the cells are, the more accurate are the results for the inverse scattering problem. 
This factor is critical for early breast cancer detection to find a tumor at its early stage 
that is less than several millimeters. However, this granularity implies an increase in the 
number of cells in the computational domain. The Courant condition posed on a stable 
FDTD indicates that the largest time-step depends on the number of cells. The 
complexity of a 2D FDTD algorithm is O(N3) where N is the number of cells along one 
axis, assuming that there are same number of cells along two axes. The sequential FDTD 
algorithm takes about 200 seconds for a 600x600 computational domain. For finer 
granularity, this timing will increase together with memory. 
 
FDTD is data-parallel in nature [23] and exhibits apparent nearest-neighbor 
communication pattern [30]. A number of parallel FDTD have been reported using 
different parallel schemes on different platforms for different applications. The earliest 
work is done by Mittra et al. [30] in 1994 on an HP-735 workstation cluster via PVM. 
Liu et al. [17] parallelize the core FDTD, different ABCs and the near-to-far 
transformation on a CM-5 (32 processors) parallel computer, gaining as high 
performance as 100 times faster for a parallel core FDTD than that for the sequential 
version. Guiffaut et al. [10] implement a parallel FDTD on a omputational domain of 
150x150x50 cells (with 10 PML layers surrouned) on PC and the Cray T3E. They use 
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Message Passing Interface (MPI) and adopt vector communication scheme and matrix 
communication scheme, obtaining higher efficiency by the latter scheme. Su et al. [27] 
combine OpenMP and MPI to parallelize FDTD: OpenMP used for the one time 
initialization and each time-step updating of the E-fields and H-fields; MPI is used for the 
communication between neighboring processors. Brock et al. [3] apply the parallel FDTD 
to model the light scattering by deformed red blood cells. Ye et al. [33] introduce three 
communication schemes in parallel FDTD. The three schemes differ in which 
components of E-fields and H-fields should be exchanged and which process should 
update the E-fields on the interface. The division of the computational domain is on the 
E-field along the Cartesian axis.  
 
The communication scheme with one cell overlapping region is adopted to get a robust 
implementation. The scheme is shown in Figure 3. The division interface is along E-
fields. The computational domain is divided along x axis. Each processor attaches one 
more row of cells to the interface. The extra row of cells are the exact copy of the same 
row transferred from the neighboring processor. Therefore, for processor with rank 0 and 
(size – 1) (size is the total number of processors), only one row of cells are added since 
they only have one neighbor. For other processors, two rows of cells are added as shown 
in Figure 3. The E-fields on the interface of adjacent processors are calculated on both 
processors. The purpose of the scheme is to reduce the necessary communication of E-
fields, trying to improve the computation/communication efficiency. The parallel FDTD 
is given in Algorithm 2. 
 
 
5   Implementations and Results 
 
Both GA and FDTD are parallelized on a network of computers. They are implemented 
in C++ on Fedora Core 5. The parallel version uses C bindings of LAM/MPI 7.1.2. The 
hardware configuration is as follows: AMD Athlon™ 64 X2 Dual Core Processor 3800+, 
with 512KB cache, and 2GHz clock; 1GB of  main memory, and 2GB of swap space, for 
a total of 3GB of virtual memory; 120GB Seagate ST3120813AS SATA (Serial ATA)  
disk drive; 1Gb/s Ethernet network interface. The machines are connected to the network 
via a 100Mb/s Ethernet switch. 
 
Figure 4 shows the total execution time of the algorithms involved in MT: parallel GA 
and parallel FDTD. The algorithms are run on five generations with ten individuals in 
each generation. As the number of processors increase, the execution time decreases. The 
speedup on 8 processors is little above 4 while on 16 processors it is close to 6. Though 
there is an increase in speedup from 8 processors to 16 processors, the speedup increase 
is gradual. This is due to the synchronization between the genetic algorithm and FDTD. 
Also, the FDTD algorithm by itself must synchronize the parallel parts on each processor 
for each time-step. Every ith iteration depends on the (i – 1)th iteration. 
 
Figure 5 shows the execution time of parallel FDTD. These figures show clearly that the 
FDTD algorithm dominates the total execution time of MT. The execution time of the 
sequential algorithm (GA and FDTD combined) is 10,131 seconds. The total execution 
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time obtained on 16 processors that is approximately 2000 seconds surpasses the 
sequential algorithm. 
 
 Algorithm 2 Parallel FDTD using TMz mode for breast cancer detection 
initialize E-fields Ez, H-fields Hx and Hy on each processor to zero; 
if(processor is master processor) 
 initialize the material of the computational domain, including the cross section of 
the breast, the free space, and PML layers using the coefficients in equation (2) through 
equation (5); 
 decide the sub-domain for each processor; 
 send material parameters of sub-domain to the corresponding processor; 
else 
 receive the material parameters for the cells residing on the processor; 
for n = 1 to MAX_TIMESTEP //for all processors 
 compute Ez of all cells residing on the processor based on their previous values 
and neighboring Hx, Hy at the previous time-step, using equation 2 and equation 3; 
 compute Hx of all cells residing on the processor based on their previous values 
the neighboring Ez at the previous time-step, using equation 4; 
 compute Hy of all cells based on their previous values and neighboring Ez at the 
previous time-step, using equation 5; 
 apply Fourier transform; 
 exchange Hx and Hy fields with the neighboring processors; 
 synchronize among all processors; 
if(processor is not master processor) 
 send the final results to master processor; 
else 
 receive results from all other processors; 
 apply post processing; 
 output the results at the observation points; 
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Figure 3: Communication scheme in parallel FDTD 
 

 
 

Figure 4: Runtime for PGA and PFDTD 
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Figure 5: Runtime for PFDTD only 
 
 
 
 

6   Conclusions 
 
The paper focuses on microwave tomography technique to detect abnormalities in 
breasts. There are two main algorithms in the technique: GA and FDTD. Both of the 
algorithms are parallelized and implemented on distributed memory machines. The 
execution time of the sequential algorithm (GA and FDTD combined) is 10,131 seconds. 
The total execution time obtained on 16 processors that is approximately 2000 seconds 
surpasses the sequential algorithm. The results are encouraging and have illustrated the 
need for parallel computers for applications in medical fields. 
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