

Agent Smith: An Application of Neural Networks to

Directing Intelligent Agents in a Game Environment

Jonathan Wolf

Tyler Haugen

Dr. Antonette Logar

South Dakota School of Mines and Technology

Math and Computer Science Department

Rapid City, SD 57701

jonathan.wolf@gmail.com

tyler.haugen@mines.sdsmt.edu

antonette.logar@sdsmt.edu

Abstract

An Intelligent Agent, or software robot, is a program that is capable of acting in place or in

behalf of a user. Intelligent agents, those capable of perceiving and reacting to their

environment, have become an important element of game programs. Many games use a

finite state machine (FSM) approach to reacting to changes in the environment – changes in

the environment generate changes in state. The unique approach taken in this research is to

use an artificial neural network as the decision-making process. The agent perceives its

environment, presents that information to the network as a feature vector, and receives it next

action as an output from the network.

http://sdmines.sdsmt.edu/sdsmt/directory/personnel/alogar

1

Introduction

Agent Smith is project developed to examine the application of Artificial Neural Network in the

video game industry. Intelligent Agents, or software robots, are often used to implement players

in a video game. This project uses an Artificial Neural Network in place of a Finite State

Machine to make an agent to behave intelligently.

ANN vs. FSM

Finite State Machines (FSM), one of the direct competitors to Artificial Neural Networks

(ANN), have seen much use in the video game industry in much part due to their general

simplicity and ability to simulate required basic behaviors needed for a general illusion of

intelligence. The FSM is nothing more than a cyclic graph in which its nodes, also known as

states, represent a particular behavior simulated by the system. Connections from one node to

another define a set of conditions that when satisfied allows a state change [Buckland05]. While

similar in intent compared to ANNs in terms of its classification ability (i.e. ability to classify a

set of sensory input to a particular response), it does have a few drawbacks in comparison.

Intelligent Agents

Intelligent Agents are computer programs that carry out a task in place or on behalf of a user.

Intelligent Agents themselves by themselves are not necessarily Artificial Intelligence but a

mechanism for the delivery of Artificial Intelligence. This definition for an Agent is rather

vague so it is important to look at some common characteristics that are assorted with Intelligent

Agents. One the most important characteristic is autonomy. Agents are often used in situations

where user feedback is not an option. For example, a video game that needs to ask the user its

next move would not be very entertaining.

Communication and Cooperation can be important features of Intelligent Agents when multiple

Agents are working toward the same goal. If agents were to be designed to guard an area of its

environment utilizing communication and cooperation between them could greatly improve their

effectiveness. Personality is also another feature that can be associated with an Intelligent Agent

and in video games personality can be an important feature of the Artificial Intelligence. For

example, one category of agents may aggressively attack the user regardless of situation where

as a different agents may be more likely to regroup with other agents and attack in numbers.

Agents are often implemented to be adaptive, learning from experience, its environment, or other

Agents. Intelligent Agents are often given mobility in their environment. These features can

make Intelligent Agents a good programming model for computer players in video games.

Agents can be design to handle the interaction and communication with its environment, other

agents, and the user. There is still one question however, what form of intelligence should drive

an Intelligent Agent.

2

Artificial Neural Networks

ANNs are a form of artificial intelligence based on the working of biological Neural Networks.

Though many different form of an artificial network exist the prevalent are most likely Multi-

Layered Perceptron (MLP) networks trained with Backpropagation. As name suggest this form

of ANNs consist of multiple layers. The first layer to the network is the input layer and simply

pushes the network inputs into the hidden (processing) layer. In a biological model this

corresponds to sensory inputs. The hidden layer applies a weight to each of its inputs and sums

their value. The summation is run thought an activation function often the sigmoid (this is

critical for the training of the network). The result of the activation function is that nodes output

and pushed on to the next layer. The next layer is either another hidden layer or the output layer.

Though there is no set number of hidden layers that can be used, mathematically having more

than two hidden layers is overkill. The output layer also has weights associated with its input

from the hidden layer. It will sum the weighted inputs but this time its output will be associated

with a value or action that represents the network output.

This stage is often called the feed-foward stage and is fairly simple to implement but leaves out

one important detail. How are those weights set? This is purpose of the Backpropagation

algorithm. Given a set of input vector along with their expected output the Backpropagation

algorithm will train the weights of a network. Once the weights are set network will be able to

classify all inputs vectors back to their expected results.

Creation

ANNs and FSMs have a few shared traits that don't differentiate much between them. For

instance, both require a known set of responses, both require a known of set of sensory input

(bonus if sensory input is easily expressed as a numerical quantity), and both require that a

developer determines what particular conditions invoke a particular kind of response.

However, ANNs have a distinct advantage over FSMs in that when defining responses to

conditions, it is more natural for the developer, given a set of sensory input vectors, to simply sit

down and judging each sensory input vector presented that the response in that particular case

should be X instead of Y, etc.. Over a course of several different variations of such input vectors,

one develops the needed training vectors to train an appropriate network. On the other hand,

FSMs do not posses that same simplicity, but rather requires the developer to build a state

diagram and determine change conditions on every state to every other state that has a transition

connection. While still not necessarily too complex, it still generally requires a bit more effort to

build and maintain such a diagram.

The advantage in ANNs is even raised slightly more when considering creating “multiple

personalities”, so to say. When designing multiple sets of such systems, the creation time and

management time in ANNs, after factored over a few such sets, especially if needing extended

later on, will drastically cut down hours spent developing and maintaining such “multiple

3

personalities.”

Implementation

Using FSMs it is fairly easy to develop an FSM with even just basic programming knowledge.

The math that deals with FSMs is fairly trivial and straight-forward, and does not require much

code to actually get a minimal FSM system up and running. ANNs require quite a bit more

coding work, and do require quite a bit more mathematical knowledge in how things work and

why certain things don't work (e.g. over-training a set of training vectors, having the first two

training vectors be at the value extremes, etc.). In this regard, FSMs are easier at a coding level.

Overall, the implementation work between the two is not necessarily a huge issue considering

that these systems are well defined in literature, have free code samples for them, etc. Either

way the ANN will take slightly longer to code, and usually requires a separate training tool to be

built with it for the developers. However, once built, code maintenance time is minimal with

both.

Serialization

ANNs, due to their very simplistic numeric storage requirements (e.g. an array of numbers), it is

very easy (and quite natural) to externalize the object to an external form, be it plain text, XML,

or binary. Across a set of ANNs, their output behaviors can be shared along with unique network

values that can simply come from the process of training a network. Serialization of an ANN is

thus quite straight-forward in that regard.

FSMs, on the other hand, can still be externalized, but do carry with them some extra baggage.

Although some aspects of the design are still shared from one node definition to another (e.g.

sensory inputs), there are aspects that become more complicated to describe, such as each

particular transition line and performing such transition conditions related thereof. In particular,

referencing of other nodes via pointer leads to the classical pointer-identifier issues with

serialization of items.

Extensibility

ANNs have a natural ability, simply from the way they are built, to adapt to new changes in the

system, in some variations dynamically on their own at run-time (something FSMs would be

very hard pressed to emulate). As a result of this more dynamic nature, modifying and adding to

an ANN based system is fairly straight-forward and requires a few extra training vectors along

with a retraining and general testing. An FSM may be more complicated in that node connections

might change drastically to incorporate new states and other input leading to time wasted

rewiring the FSM. From a maintenance standpoint this causes FSMs to be generally less

extensible than ANNs, circumstances depending of course. In general, any complicated

4

interactions with FSMs, if not well defined and known ahead of time (i.e. a general rarity), will

cause for such increased development time.

The Game

To test the effectiveness of a neural network as a decision-making engine in a game, a simple

single-player game was implemented. The purpose of the game is for the player to capture a

location represented by a treasure chest. The agents are tasked with defending the treasure.

Thus, from the perspective of the agents, the person playing the game represents a threat and the

other agents represent allies. The player can disable agents by touching them on the back – the

player has no other weapons. The agents can shoot fireballs at the player and when the player is

struck by a fireball, its health is diminished. The fatigue of the agent is determined by its current

action. The possible actions are to flee, rest, attack, wander, and return to the treasure. Resting

will decrease the agent’s fatigue while all other actions will increase it by differing amounts.

The player wins by reaching the treasure, and loses if his health is decreased to zero by absorbing

repeated attacks from the agents.

5

Network Inputs

Each agent has five different inputs that it can act one. The fatigue described is one the inputs

and was given a range from zero to one, being fully rested and zero a being fully fatigued. The

agents are also aware of their distance from the objective and the number of allies in its vicinity.

The ability to sense the user and the health of the user make up the two remaining inputs.

The Agents

To test the effectiveness of the ANN driven agent two different agent types were developed, a

passive agent and an aggressive agent. The goal was to be able to quickly make agents with

distant personally both capable of making intelligent decisions. Agents are given the ability to

communicate with other agents within a certain distance. If one agent see the user in its field of

vision and its can alert the agents within a certain distance.

Testing & Debugging

FSMs are slightly more natural to work with than ANNs given that an FSM will exhibit a static

6

known behavior that is slightly more easily for the developer to test, especially at design time.

ANNs, given that the training vectors may not always be the most well-defined, can sometimes

exhibit strange behaviors that may seem quite contrary to what was intended while testing at run-

time, resulting in potential time wasted toying with training vectors and retesting. As a result,

depending on how well fit training vectors are used (while also being careful to not over-train,

etc.), it can be slightly more work to debug and fix an ANN than a FSM, granted that the FSM

was developed with all possible conditions in mind ahead of time (again, a general rarity). In

other words, a poorly designed yet complex FSM, especially if not built right the first time and

major edits are required later on, the time wasted performing those edits generally outweigh the

time wasted toying with training vectors. However this isn't to say that an ANN will always

produce chaotic results to the point they neglect their usefulness – in many cases the authors

have seem them almost always out-perform most other classification systems.

Results

In a short amount of time two sets of inputs vectors were developed. One set to describes the

behavior of the passive agent and another to describe the aggressive agent. These agents acted

intelligently showing signs of collaboration and personality.

Observations of Network Behavior

The inexactness of the ANN can sometimes even be exploited in that a chaotic behavior actually

turns out to be artistically relevant for the intended purpose of the system (e.g. for “Agent

Smith”, the agents at one time decided to run away rather than fight – although not the intended

result it turned out to be an artistically relevant behavior for an agent to decide to do). One of the

major difficulties with working with ANNs is the finding training vectors that generalize well.

Training sets that do not generalize well can lead to the described chaotic behavior

One way to make the ANN not as spontaneous (in terms of state change frequency), thus

possibly avoiding sudden chaotic behavior switches, is to hybrid it with a transition mechanism

of some kind. In a way this can be seen as somewhat of a hybrid between the ANN and FSM

where the state control and transitioning control is decoupled between the two systems. Either

way, the transition mechanism has the net effect of dampening the behavior result as to not

switch from one behavior to another too rapidly.

Conclusion

Depending on the required behavioral complexity for a particular purpose, it is common to see

simple behaviors being modeled with an FSM simply because simple behavior doesn't require

much complexity in design. For these simplistic systems, the FSM does not reach a level in

which its faults cause any significant strife with the development effort. However, for more

complex behaviors and other more complicated interactions, especially anything dealing with a

7

dynamic nature, an ANN will almost certainly result in less development time, even after taking

into account any potential time wasted toying with training vectors, which as described above is

generally going to be shorter than the time it takes to rewire a complicated FSM. Overall, the

ANN is a better choice than the FSM for anything more than a simplistic system.

8

[1] Alpaydin, Ethem. Introduction To Machine Learning. Combridge, Massachusetts: The MIT

 Press, 2004.

[2] Buckland, Mat. Programming Game AI by Example. Plano, Text: Wordware Publishing

 Inc, 2005.

[3] Coppin, Ben. Artificial Intelligence Illuminated. Sunbury, Massachusetts: Janes and Bartlett

 Publishers, 2004.

 [4] Hagan, Martin, Howard Demuth, and Mark Beale. Neural Network Design. Bolder,

 Colorado: University of Colorado Bookstore.

 [5] Jones, Tim. AI Application Programming. Hingham, Massachusetts: Charles River Media,

 2005.

