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ABSTRACT 
 
This work describes a new non-destructive evaluation technique for detecting wormholes 
in friction stir welds.  Feedback gathered during welding in both the time and frequency 
domains can be used to indicate the presence of a defect.  Binned DFT frequencies of  
feedback signals were used as feature vectors for training a neural network.  The 
approach was successful, recognizing 95% of novel inputs, but the network’s ability to 
generalize is limited.  Phase space analysis, a technique for comparing the signal to its 
time-derivative, provides a more robust option.  Characterization of both the degree of 
circularity of the phase space diagram and the extent to which it is stationary has been 
tied to material flow and to defect formation.   This technique was capable of detecting 
weld defects with 81% accuracy. 



1.  INTRODUCTION 
 
Friction stir welding (FSW) is an innovative technique for joining metals that was 
developed and patented by The Welding Institute of Cambridge, England in 1991 [1].  In 
this work, a threaded probe with shoulder (pin tool) was rotated and plunged into the joint 
line between two workpieces forming a butt joint (Figure 1).  Friction between the wear-
resistant pin tool and material generates sufficient heat to plasticize the work pieces 
without melting.  The rotation of the pin tool plays two important roles.  First, it 
generates heat due to the friction, and second, it stirs the two plasticized work pieces 
together.  As soon as the material reaches a plastic state, the rotating pin tool travels 
along the joint line and creates a solid-state bond between the two work pieces.  While 
traveling along the joint line, the rotating pin tool has to have a downward forge load to 
maintain registered contact with the work pieces.  Thus, three important parameters must 
be defined when making a weld :  how fast the pin tool rotates, how fast the pin tool 
travels forward joining the two pieces, and how much force is exerted on the pin tool to 
maintain contact between the shoulder and the work pieces. 
 
FSW has numerous advantages over fusion welding.  It offers the ability to weld 
previously difficult or impossible combinations of materials, creates less distortion, 
allows for retention of parent material properties, requires lower energy consumption, 
produces diminished residual stresses, and is friendlier to the environment [2]-[5].  
However, despite the simplified processing, an improper selection of system parameters  
may result in a weld with undesirable defects.  One of the most common defects 
associated with FSW is a wormhole, a cavity completely below the weld surface  
undetectable to a human operator.  The primary cause of a wormhole defect is abnormal 
material flow during welding.  Because of the reduced joint area between the work 
pieces, wormholes severely weaken the mechanical properties of the weld bond.  The 
research to date has concentrated on determining the presence of wormhole defects from 
feedback captured from the machine while the weld is being made.  The final goal is a 
control algorithm that will adjust system parameters in real-time to prevent wormhole 
formation.  Note that many factors may contribute to wormhole formation, such as 
clamping or pin tool geometry, but this study only varies the three parameters listed 
above, rotation speed, travel speed, and downward force, the thickness of the aluminum, 
and the alloy. 

 

 
 

Figure 1:  Drawing of a typical FSW pin tool 



 
 
2. THE DATA 
 
As noted above, an interesting problem in many FSW applications is how to determine 
the presence of wormholes.  X-ray techniques have a high degree of accuracy, but the 
equipment needed to test the weld may not be available or feasible to use in all situations.  
This research provides an alternative technique in which feedback captured during the 
welding process is used for performing non-destructive evaluation of the weld quality. 
 
The welding machine in use at the Center for Friction Stir Processing (CFSP) on the 
SDSM&T campus is an ISTIR-10 capable of recording a variety of feedback forces.  The 
X feedback force is a measure of resistance to the weld in the direction of travel of the 
pin tool as a weld is being made, Z feedback force provides feedback on the force exerted 
in opposition to that of the downward pressure placed on the pin tool, and the Y feedback 
force measures the amount of sideways movement made during the weld.  Note that 
welds can be made under position control or forge force control.  In position control, the 
pin tool is placed at a particular height and remains at that fixed position.  In forge force, 
a constant amount of downward pressure is maintained throughout the weld.  Thus, 
greater variation would be expected in the Z feedback under position control than under 
forge force control.  Correlation analysis indicates that the distribution of frequencies in 
the frequency spectra of the X, Y, and Z feedback forces are all indicators of weld quality 
to some degree, but the Y force appears to be the most strongly tied to the weld quality.  
Two approaches to using the feedback forces are described in this work :  one uses the 
time domain feedback force data as captured by transducers on the weld head assembly 
of the pin tool, and the other uses the frequency spectra of these signals. 
 
 
2.1  Time Domain Data 
 
One of the obstacles to evaluating weld quality from the Y feedback, or any feedback 
parameter, is the presence of noise in the output signal.  The welding process does not 
occur in an ideal environment but rather is influenced by external factors such as 
temperature, metallurgical variations, edge inconsistencies etc., as well as by the 
inevitable machine-specific variability.  Investigations are on-going to identify and 
characterize all of the types of noise that contribute to the composition of the feedback 
signals, but, at present, only mechanical vibration noise is removed by a low-pass filter.  
The filter was implemented by computing the discrete Fourier transform (DFT) of the 
time series data, excising the high frequency components from the DFT, and computing 
the inverse DFT.  High frequency components are defined to be those above the spindle 
frequency, where the spindle frequency index is found by : 
 

index = spindle RPM / (60 * sampling rate (Hz) / number of points in DFT)           
 
Figure 2(a) shows a sample of the original time series data (FSW06048-5) generated for a 
butt weld of two pieces of 0.25 inch thick aluminum 7075 welded at 8 ipm, with a pin 



tool speed of 200 rpm, using forge force control and sampled at a rate of 68.2667 Hertz.  
Figure 2(b) presents the 256 point discrete Fourier transform of the original time series 
signal and indicates the spindle frequency for this sample, calculated from the equation 
above, to be at index 12.5 (rounded up 13) in the DFT array.  Figure 2(c) shows the 
filtered time series data.  The resulting signal is smoother, but more importantly, the 
trends in the data are more apparent once the high frequency noise is removed.  The 
appropriateness of using a low pass filter for removing mechanical vibration noise during 
friction stir welding was noted in [4].  The resulting filtered time series data is used for 
the phase space analysis described briefly above and in more detail in a later section. 
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Figure 2:  (a) Upper Left:  the raw y force data. (b) Upper Right:  the DFT for the 
data with the spindle frequency indicated  (c) Bottom:  the data after the low pass 
filter. 

 
 
2.2  Frequency Domain Data 
 
The neural network approach described below requires data to be transformed into 
feature vectors, compact representations of the data that retain the information necessary 
to group input vectors into classes.  Often, large data sets can be segmented into small 
pieces and presented to the network for classification with little transformation.  In this 
case, using small segments of the time domain data was not suitable as input to a neural 
network.  Given the periodic nature of the welding process and the underlying material 
flow mechanics, frequency information is essential for recognizing patterns [6]-[11].  A 
discrete Fourier Transform was applied to the X, Y, and Z feedback forces for each set of 
feedback data, and the resulting frequency spectra were analyzed.  Unstable material 
flow, the root cause of wormhole defects, appears to manifest itself in the frequency 
spectrum by an increase in low frequency components.  Figure 3 depicts examples of the 
frequency spectra for a good (pictures a and b) and a bad (pictures d and e) weld 
generated from the X and Y feedback forces.  Note that, as expected, the spindle 
frequency, the rate at which the pin tool is spinning, is the dominant frequency in a good 
weld.  This indicates the material flow is being driven by the spindle.  In the bad welds, 



the spindle frequency is less clearly dominant, indicating other forces are strongly 
influencing the material flow. Also note that the magnitude of the low frequency 
components increases in the bad welds. 

 
Figure 3:  Representative examples of the manually identified frequency patterns of X 

force and Y force.  The frequency pattern of X force in (a) and the frequency pattern of Y 
force in (b) correspond to a good weld, whose cross-sectional image is depicted in (c).  

Likewise, the frequency pattern of X force in (d) and the frequency pattern of Y force in 
(e) correspond to a bad weld, whose cross-sectional image with a wormhole defect is 

depicted in (f). 
 
Since the low frequency portion of the spectrum provides the best differentiation, DFT 
values above the spindle frequency were ignored.  Note that this is analogous to 
performing the low pass filter described in the time domain data section above.  The 
remaining data was combined into bins by simply adding the DFT values within the bin.  
This provides a discrete approximation to summing the area under the curve for a 
continuous FFT (to within a scale factor).  The optimal number of points per bin is not 
known, but given that smaller networks are faster and easier to train, the number of bins 
was restricted to 30 - 32 per feedback value to create manageable feature vectors.  This 
approach proved effective for encapsulating the desired difference between data samples 
while creating input vectors small enough to allow for rapid training.  A similar approach 
to generating feature vectors from the DFT was reported previously in [12] [13] when 
using a neural network for pattern classification based on ground penetrating radar. 
  
The algorithm for generating the frequency domain feature vectors can be summarized as 
follows: 

• Time domain feedback data was acquired from the machine during a weld. 
• Appropriate sections of the weld were identified.  Only the portions of the weld 

made when the process has reached steady-state are included.  
• A 1024-point DFT was applied to the X and Y feedback forces for each weld.  

One set of feature vectors contained just Y values and a second set contained a 
combination of X and Y values. 

• The spindle frequency is used to indicate the end of the useful data in the resulting 
DFT.  Values above the spindle frequency are discarded. 



• The resulting DFT data was partitioned into 30 or 32 bins by dividing the 
frequency spectrum into 32 equal length segments and assigning a value to each 
bin equal to the area under the curve for that segment of the frequency spectrum.  
The feature vector used for classification of a given sample is comprised of the 
30-32 bin values. 

• The vectors were labelled according to metallurgical quality. 
 
A supervised-learning approach was selected for training the neural network which 
necessitated the creation of labeled samples, that is, feature vectors for which the correct 
classification (defect or no defect) is known to the network during training.  These 
vectors are referred to as the training set.  The testing set, consisting of novel samples not 
seen by the network during training, was used to test the network’s ability to generalize 
within the parameters set for the experiment.  It is important to note that all samples were 
taken from welds made on aluminum on the same machine using the same clamping, 
underlayment, and pin tool.  Only the travel speed, rotation speed, alloy, and thickness of 
the material were varied.  Thus, the results show the extent to which the network can 
generalize under these restrictions.  Samples of good and bad welds are included in each 
data set as show in Tables 1 and 2. 

 
 Good welds Bad welds Total Examples 

Training set 46 8 54 
Testing set 146 5 151 

Total Examples 192 13 205 
 

Table 1 :  Number of vectors in the Training and the Testing Sets (Y feedback only) 
 
 

 Good welds Bad weld Total Examples 
Training set 84 96 180 
Testing set 28 32 60 

Total Examples 112 128 240 
 

Table 2 :  Number of vectors in the Training and the Testing Sets (X and Y feedback 
combined) 

 
 

 
RPM = 425 IPM varied:  2, 4, 6, 7, 8, 10, 12 
RPM = 500 IPM varied:  2, 4, 6, 7, 8, 10, 12 
RPM = 350 IPM varied:  2, 4, 6, 7, 8, 10, 12 
RPM = 450 IPM varied:  2, 7, 12, 7, 2 

  
IPM = 7 RPM varied:  500, 425, 350, 300, 350, 425, 500 

 
Table 3 : Weld Parameters (Y feedback only) 



 
 

 
Travel 
Speed 
IPM 

Spindle 
Speed 
RPM 

Forge force 
lbs 

25 300 11509 
25 300 11809 
25 300 12109 
25 300 12409 
20 300 11000 
12 300 9600 
3 300 6500 
25 300 12609 

 
Table 4 : Weld Parameters (X and Y feedback combined) 

 
 
3. NEURAL NETWORK APPROACH 
 
The application of a neural network to the problem of determining weld quality was first 
published in [8].  As a prelude to that study, a linear multiple regression analysis [14] was 
run on the training set using MiniTab software in order to see whether a linear 
relationship exists between the frequency patterns and the wormhole diameters.  As a 
result, the R-squared value was about 35.8%, which means the governing relationship is 
most likely nonlinear.  This suggests that a multilayer neural network would be an 
appropriate approach given the demonstrated capability of networks to construct 
nonlinear relationships between inputs and outputs. 
 
As noted above, a supervised-learning approach was used which necessitated the creation 
of labeled samples, that is, feature vectors for which the correct classification (defect or 
no defect) is known to the network during training.  These vectors are referred to as the 
training set.  The testing set, consisting of novel samples not seen by the network during 
training, was used to test the network’s ability to generalize within the parameters set for 
the experiment.  It is important to note that all samples were taken from welds made on 
aluminum on the same machine using the same clamping, underlayment, and pin tool.  
Only the travel speed, rotation speed, alloy, and thickness of the material were varied.  
Thus, the results show the extent to which the network can generalize under these 
restrictions. 
 
 
3.1  Network Topology and Training Parameters 
 
The multilayer perceptron network, trained using the back propagation algorithm, that 
was implemented for this research is described in many sources [15].  A single 
perceptron, or node, receives one or many external inputs on weighted input lines, 



computes the weighted sum of the inputs, and generates an output which is a function of 
that sum.  The computed function, generally non-linear and continuous, produces a 
mapping from the input space to a classification space.  Multilayer perceptron networks 
contain perceptrons arranged into an input layer, an output layer and one or two hidden 
layers (Fig. 4).  Since arbitrary decision surfaces can be constructed with two hidden 
layers, more than two will not add functionality [16][17].  In this research, a single 
hidden layer proved sufficient. 
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Figure 4:   Sample neural network architecture.  The networks used in these experiments 
consisted of 32 inputs plus a bias, 20 hidden nodes, and 2 output nodes for metallurgical 

quality. 
 
The knowledge of the network is stored in the connection weights which are set to small 
random numbers between -0.1 and 0.1 when the network is initialized.  During training, 
the error at a point in time is computed as the aggregate squared difference between the 
desired network outputs and the outputs actually produced by the weights at that time.   
 

Error t Actual t Desired ti i
i

( ) ( ( ) ( ))= −∑1
2

2

 
 
The weights are adjusted using gradient descent to minimize that error.  The technique 
relies on the computation of the partial derivative of the error with respect to each weight.  
A step size, often called the learning rate, is multiplied by the negative of the partial 
derivative, and this product is used to update of the weight: 

ij
ij

Ew
w
∂η
∂

Δ = −  

The topology of the network used for assessing weld quality in the Y feedback only 
experiments had 32 inputs plus a bias, 20 hidden nodes, and 2 output nodes.  If the first 



output node responds to the input, the network classifies the weld as not containing a 
metallurgical defect; if the second output node responds, a defect is predicted to be 
present.  Other system parameters necessary for reproducing these experiments are a 
learning rate of .1, the addition of a momentum term with a coefficient of .5, and 500 
training iterations per experiment.  Initial weights were set to random numbers in the 
range -0.1 to 0.1.   The transfer function used at the hidden nodes and the output nodes 
was the sigmoid function: 

1( )
1 xf x

e−=
+

 

 
Since neural network training can be sensitive to initial weights, four runs, each with 
different initial weights, were performed.  The network was able to correctly classify all 
of the training and testing vectors, including vectors taken from welds with previously 
unseen rpm, ipm, material thickness, and alloys.  However, in these initial experiments, 
all data was taken from position control welds.  When forge force control data was used, 
network performance for Y values only dropped to 92%.  Similar performance was 
observed when using vectors generated from the X feedback, but, interestingly, the types 
of errors were different.  The network trained using the Y data set erred by not finding 
defects when they existed, but the analogous network trained with the X data set found 
more defects than actually existed.  Thus, feature vectors were generated using the binned 
frequency spectra of both the X and Y feedback signals.  For the first data set, when 
binning the Y feedback values, frequencies above the spindle frequency could be ignored.  
However, for the second data set, when using the X feedback in addition to Y, it was 
necessary to include frequencies up to twice the spindle frequency to achieve the desired 
accuracy.  The resulting combined feature vectors had 96 elements which made training 
unacceptably slow.  Frequency bins were pruned one at a time until the optimal vector 
size of 60 elements was determined.   The resulting network was able to classify 98% of 
the training vectors and 95% of the testing vectors correctly and did not classify any 
defective welds as good (Table 5 and 6).  
 
Additional experiments were conducted to determine the sensitivity of the network to 
other parameters.  Experiments which sought to optimize the learning rate, momentum 
factor, the number of hidden units, and the number of output nodes – one or two outputs 
can be used for this problem – produced small improvements but none of significance.  
This demonstrates the robustness of the network; it was able to train to a high degree of 
accuracy with any reasonable set of starting conditions.  Note that other conditions were 
held constant including the size of the initial weights and the number of epochs used for 
training.  All results are the average of four runs as noted earlier. 
  
Predicted Class vs. Actual 

Class 
Category of good weld – 

Actual 
Category of bad weld – 

Actual 
Category of good weld – 

Predicted 81 / 84 0 / 96 

Category of bad weld – 
Predicted 3 / 84 96 / 96 

Table 5:  Confusion Table for the Training Set 



 
 
 

Predicted Class vs. Actual 
Class 

Category of good weld – 
Actual 

Category of bad weld – 
Actual 

Category of good weld – 
Predicted 25 / 28 0 / 32 

Category of bad weld – 
Predicted 3 / 28 32 / 32 

Table 6:  Confusion Table for the Testing Set 
 
4. PHASE SPACE APPROACH 
 
The neural network approach proved effective for determining weld quality and is useful 
in situations where welding conditions will not change, such as in industrial applications.  
However, the network’s ability to generalize to different types of material or substantially 
different welding conditions is limited.  A new network would need to be trained for each 
application.  Another approach was developed which attempts to find a characterization 
of the feedback that is independent of the material or processing conditions.  The 
motivation for this technique was found in dynamical systems[18][19].  Recall that the 
material flow in a good weld should be stable and periodic.  From a dynamical systems 
perspective, this means that the changes that occur in the feedback forces should occur in 
a predictable or stable manner.   Ideally, equations describing the system dynamics can be 
used for stability analysis, however, in many situations, those equations are not available 
or easily derived.  In those cases, including this research, a sampling of the system 
outputs is used to approximate the system dynamics. 
 
As noted above, the total magnitude of the low frequency components of the Y feedback 
values was strongly correlated to weld quality.  This is the feedback force that quantifies 
the side-to-side motion experienced by the pin during welding, or more correctly, the 
variation in the motion of the pin tool perpendicular to the direction of the weld as it 
progresses through each rotation.  Intuitively, this should also be the appropriate feedback 
for identifying aberrations in material flow since variations in material movement around 
the pin will manifest themselves in changes in the Y feedback force.  Plotting the Y 
feedback values on the horizontal axis against the change in the Y values ( Y′) on the 
vertical axis provides a mechanism for examining the dynamics of the welding process 
with respect to the Y output value.  As with position and velocity, the relationship 
between Y and Y′ gives information about the behavior of the system.  Also note that this 
behavior is abstracted from time and provides a compact framework within which the 
system dynamics can be examined and patterns easily recognized.  These plots are 
commonly referred to as phase space diagrams or phase plots. 
 
The curves formed by plotting a variable against its derivative through time are known as 
trajectories or orbits.  In most physical systems, the trajectory will be bounded in some 
finite region of phase space and often tends to either a rest point or a limit cycle.  A rest 
point is one where all system dynamics cease – the system is at rest.  Limit cycles are 



periodic solutions which attract or repel the orbits.  After the transient behavior has died 
out, the flow is essentially on the limit cycle.  In such cases, it is sensible to talk about the 
orbit as a closed curve since the trajectory will return to the same point and repeat the 
same sequence of values.  Both fixed points and limit cycles are referred to as stable or 
unstable if they attract or repel the trajectories.  As a simple example, plotting the 
function f (t) = sin(t) against its derivative  f ′(t) = cos(t) will produce a circle.  No matter 
how large t becomes, the trajectory defined by plotting  f (t) vs. f ′(t) will always remain 
on the circle.  This is an example of stable dynamics.  Similarly, phase space plots 
indicated that the trajectories of the Y vs. Y′ plots tended to have stable orbits for good 
welds and tended to diverge from the orbits for bad welds.  Examples of phase space 
plots of a good weld and a bad weld can be found in Figure 5.  Figure 6 shows the 
location and size of the wormhole resulting from the bad weld in Figure 5.  Note that the 
phase space plot of the spindle frequency (rpm) defines a stable orbit which can be 
considered to be the ideal trajectory for a weld made using the given system parameters.  
The spindle frequency orbit is plotted on the graphs to provide a reference for divergent 
or convergent behavior. 
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Figure 5:  Phase space trajectory for the y force (horizontal axis) vs. the derivative 
of the y force (vertical axis) measured in foot-pounds (lbf).  The phase space plot 

on the left is for a good weld, the plot on the right is for a bad weld.  The 
trajectory of the spindle frequency is also plotted for reference. 

 

 
Figure 6:  The location of the resulting wormhole at 40x magnification for the bad 

weld in Figure 5. 
 

Visual inspection can easily distinguish very good welds from very bad welds as shown 
above.  However, quantifying the degree of stability of a trajectory and determining a 
probability of defect based on the degree of divergence from the ideal has proved 
difficult.  One approach that has produced reasonable results is the Poincaré Map [20].  In 
this approach, a hyperplane is positioned orthogonal to the direction of the trajectory.   If 



a trajectory is periodic and stable in its orbit, the trajectory will repeatedly cross the 
hyperplane at the same point.  If the trajectory is nearly-periodic or has an orbit that 
returns to nearby points, the crossings will be tightly clustered.  Note that the dynamics of 
the system are assumed to lie in a plane, an assumption which simplifies calculation but 
may lose valuable information about the trajectory.  However, if the trajectory does 
remain in the plane, a reasonable hyperplane selection is the x-axis.  Computing the 
standard deviation of the x values at each intersection of the trajectory with the x-axis 
provides a simple measure of stability.  Table 7 gives the welding parameters used for 
butt joint welding of aluminum.  From this data and the plot in Figure 7, a standard 
deviation of 1.0 will give perfect accuracy for identifying defects.  Additional tests are 
needed to determine a general algorithm for setting the correct cutoff.  Note that the weld 
made at 250 RPM and 10 inches per minute has no defects while the weld made at 250 
and 16 inches per minute has a known wormhole.  It is possible that the relatively high 
standard deviation for the 10 IPM weld indicates that the probability of making a 
wormhole is increasing as the pin tool is being pushed through the material at a faster 
rate.  At 250 RPM the standard deviation is 0.12 at 2 IPM, 0.18 at 6 IPM, and jumps to 
0.75 at 10 IPM.  Thus, the standard deviation may prove useful for determining the limits 
of processing parameters for making defect-free welds. 
 
 

RPM IPM Defect Size SD 
250 2 0 0.1200 
425 6 0 0.1600 
250 6 0 0.1800 
425 10 0 0.1900 
 350 2 0 0.1900 
350 6 0 0.2200 
500 10 0 0.2400 
500 2 0 0.2700 
500 6 0 0.3400 
350 10 0 0.3700 
500 9 0 0.5000 
250 10 0 0.7530 
 250 16 0.1000 1.0000 
250 14 0.0500 1.0400 
500 9 0.0600 1.1000 

    
Table 7 : Welding parameters, observed defect area (mm2), and standard deviation 

computed from the Poincaré Map of position control welds. 
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Figure 7:  Standard deviation versus defect size.  A cutoff of 1.0 produces accurate 

classification for position control welds.  The horizontal axis is standard deviation and the 
vertical axis is the area of the wormhole (mm2). 
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Figure 8:  Standard deviation versus defect size.  No cutoff produces accurate 
classification for forge force control.  The horizontal axis is standard deviation and the 

vertical axis is the area of the wormhole (mm2). 
 
 

Unfortunately, the standard deviation method is only accurate for position control data.    
Forge force welds do not exhibit the same behavior (Fig. 8).  For the experiments 
reported here, a standard deviation cutoff of 1.0 resulted in 81% accurate classification. 
From the chart it can be observed that it is possible for a good weld and a bad weld to 
have the same standard deviation under forge force control.  Additional approaches are 
focusing on comparing the critical points of the expected trajectory with the actual 
trajectory and quantifying the degree and direction of divergence. 
 
 
5. CONCLUSION 
 
This work presents two approaches to non-destructive evaluation of weld quality in real-
time.  Other techniques require the completion of the weld before the presence or absence 
of defects can be determined making them unsuitable as a basis for a control algorithm.  
The DFT frequency spectra generated from feedback data obtained during the welding 
process can be binned and used as inputs to a previously trained neural network.  When 
the welding parameters do not vary widely, this approach has resulted in perfect 
classification of both training and testing data.  The more variation that can exist while 
making the weld, the less accurate the network becomes.  Thus, for repetitive welding 
under similar conditions, the neural network has proven effective.  If conditions change, a 
new network must be trained to generate new weights.  The second approach removes 
this limitation by considering the stability of the feedback values.  When the material 
flow around the pin tool is approximately the same with each revolution of the tool, the 
phase diagram of the feedback forces is stable – stationary and roughly circular.  When 
the material flow fluctuates, one of the main causes of wormhole development, the phase 
diagram is not stable.  In theory, this approach should be independent of the welding 
parameters since the flow of material around the pin tool must exhibit regular behavior to 
make a good weld under any conditions.  This theory is currently being tested by varying 
the pin tool, the material, and the welding machine.  Under position control, it has been 
possible to identify a cutoff value for the standard deviation of the Poincaré Map 
crossings that correctly classifies all welds.  While this approach does not work as well 
for forge force welds, a technique which compares the critical points of the desired 



trajectory with those of the actual weld shows great promise.  Work is continuing on 
formulating a general approach to quantifying the stability of the trajectories and relating 
that value to weld quality. 
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