

A Peer Review System to

Enhance Collaborative Learning

Brandon Holt, Luke Komiskey, Joline Morrison, and Mike Morrison

Department of Computer Science

University of Wisconsin-Eau Claire

Eau Claire, WI 54702

morrisjp@uwec.edu

Abstract

Peer review is a proven learning approach that allows students to observe and critique

different solutions to a problem, as well as to receive feedback on their own work. The

purpose of this research is to develop a computer system to support this learning

approach within the classroom environment. This system will allow instructors to create

and administer peer review assignments easily and with a variety of configuration

options. It will enable students to view the work they are reviewing electronically,

submit reviews, and also display peer reviews of their own work. This paper describes

the system architecture, database schema, and database implementation of the first

iteration of this system. It presents the client-side interface with which the users will

interact, which is a Java-based client application (JNLP) that the users of the system

(instructors and students) will use to upload assignments, assign reviews, and create

reviews. It concludes with our contributions, a summary of what we learned, and our

plans to test the system and assess its usability and utility.

1

Introduction

Peer review is a proven learning approach that allows students to observe and critique

different solutions to a problem, as well as to receive feedback on their own work.

Instructors are often reluctant to use this approach in their classrooms because of the

overhead involved in creating and administering these assignments. A computer-based

peer review system that automates the administration process seems like a logical

solution. A number of online peer review management systems exist, but most lack

flexibility in specifying how reviews are assigned and administered, and in specifying

review assessment rubrics. The purpose of this project is to develop and evaluate a

general purpose peer review system that can support peer reviews in a variety of courses

and review configurations, and automatically generate a variety of assessment questions

to target specific assignment goals.

This paper describes the development of a prototype system that addresses these

requirements. The first section describes our systems development research approach.

The next section develops a research framework by describing the peer review process,

and reviewing existing peer review systems features. From this review, we identify the

requirements for our software prototype. Next, we describe the system architecture,

database schema, and database implementation for our prototype, as well as the client-

side interface with which the users will interact. The final section describes our

contributions, a summary of what we learned, and our plans to test the system and assess

its usability and utility.

Research Approach

This research uses a systems development research methodology proposed by

Nunamaker and colleagues (e.g., (1), (2)) illustrated in Figure 1. In this methodology,

the researcher first identifies research problems and related research questions. He or she

then develops and evaluates a software prototype for a new software system using the

steps shown. Evaluation results may suggest revision of the prototype concepts,

requirements, architecture, design, or implementation. After implementing these

revisions, the research repeats the evaluation phase one or more times, with the goal of

satisfying the research questions. The prototype itself serves as a system specification or

working system to support further research.

Conceptual Development and System Requirements

Peer review is widely acknowledged as a beneficial tool for student learning by

encompassing critical thinking and active learning (3). Wolfe (4) observes several less

obvious advantages of peer review: students have the opportunity to see other students'

work, which may be of higher or lower quality than their own and become more aware of

where they fit in the overall fabric of the class; students with higher knowledge levels can

2

share this with their classmates; and, students were observed to work harder and turn in

higher quality work to impress their classmates.

Wang et. al (5) describes peer review as a six-phase process:

1. The author (student) completes his/her assignment program solution files;

2. The author submits the solution files to the instructor;

3. The reviewer performs the review as assigned;

4. The reviewer submits the review and makes it available to the author and the

instructor;

5. The author revises the assignment based on the review;

6. The instructor confirms that the author and reviewer perform their work

satisfactorily.

In addition, the instructor must specify the following configuration details:

1. Assignment and review due dates;

2. Review assessment rubric or scoring method;

3. Review anonymity level (non-anonymous, single-blind, double-blind);

4. Number of reviewers for each assignment;

5. Reviewer assignments (random or non-random).

Figure 1: Systems development research methodology

3

The literature describes several existing peer review systems. One is Peer Grader (PG),

described in (5). This system is a Web-based application written in Java that allows

authors to submit files for review either sequentially, or in a single Zip file. The latter

approach allows directory hierarchies to be maintained. The system generates a Web

page that contains links to the submitted files. Reviewers can then access files, review

them, and provide feedback in the form of a text input field and a letter grade. The

system can assign reviewers "pseudo-randomly", or the instructor can assign the

reviewers using an external spreadsheet. From this information, we surmise that the

student and reviewer information is also contained in an external spreadsheet. This

configuration is supports totally anonymous (double-blind) reviews.

A system described by Wolfe (4) supports having students log on to a course Web site,

submit the URL of an assignment for review, and then access other submitted

assignments and perform reviews. In this configuration, anonymity is one sided:

students know who they are reviewing, but do not know who has reviewed them.

Both of these systems do not seem to provide much flexibility in how instructors can

target particular aspects of assignments. Read, Review, and Access System (RRAS) (7)

is an interesting system that has an administrative interface for maintaining course,

instructor, and student information; an instructor interface for creating assignments,

assessment rubrics, and accessing submissions and reviews; and a student interface for

allowing students to log on, view assignment details, submit assignments, view peer

evaluations, and check grades. Of specific interest is the ability of this system to create

more detailed assessment questions, such as "Program easy to read and understand; Good

use of indentation and white space." However, it is not clear if reviewers can respond to

this measure using a quantitative value or a text comment.

In summary, existing systems support the submission and review process, but none

support the required configuration options and flexibility. The following section

describes the system architecture, interface, and database schema of the system we

developed to address these requirements.

System Description

The system is written in Java and uses a Java Web Start launcher, which you place as a

link on a Web page. When the user clicks the link, the launcher downloads and runs the

Java application on the client machine. This application connects directly with the

MySQL database to retrieve the user’s data and upload new information. Figure 2

illustrates the system architecture.

4

Figure 2: Peer Review system architecture

Java Web Start is a service that allows users to launch Java applications directly from

web browsers. Java Web Start requires the Java Runtime Engine (JRE), but prompts the

user to download and install the JRE if it is not already installed. Java Web Start differs

from Java applets in that its programs don’t run inside the web browser. They are fully

independent Java applications, so they are able to bypass restrictions that applets

encounter, such as allowing hard-drive access (with the user’s explicit permission, of

course). Java Web Start applications are configured by Java Network Launch Protocol

(JNLP) files. These files use an XML schema to define the application’s run parameters,

security restrictions, and the location of the program’s Java Archive (JAR) files.

We chose to use Java for our peer review system for its ability to work across different

platforms. Using a JNLP instead of an applet allows the application access to the user's

file system, and gives us more flexibility in designing the user interface (such as allowing

custom dialogs and all the freedom of the Java Swing library). The first application

element that appears is a login screen. We knew that we needed a way to track data of

individual users (students and instructors) in our system, so users have individual

database entries that links them with all of their review information. This also provides a

way to secure each individual’s information. Most campuses have some sort of directory

service to provide students and instructors with unique usernames and passwords to

5

access private information. We didn’t want our users to have to maintain another

password, so we chose to use the existing directory validation system. At the University

of Wisconsin-Eau Claire, we have a Microsoft Active Directory server that stores user

information. Using the Lightweight Directory Access Protocol (LDAP), we can query the

server with a given username and password combination and get a response whether or

not it is correct. When a student is added to the peer review system, their University

username is associated with their entry in the database. At the login screen, they enter

their University username and password and the application connects via LDAP to

validate the login information. If it is correct, then the user gains entry to the application.

In order to make the system portable to other universities, we plan to add an enhancement

that makes the system configurable so it can easily use either LDAP validation or internal

security validation.

After the login dialog, the user interface is split into two independent interfaces: one for

students and one for instructors. When the login username has been validated, the system

searches for the username in the instructor and student tables and brings up the

appropriate view. The student view allows students to submit assignments, download and

review assignments they’ve been assigned to review, and view reviews for their

assignments.

The instructor view lets the instructor add and edit classes, sections, and assignments,

enroll students, then switch between classes and sections and see the assignments, who

has submitted and reviewed them, and view the submissions and reviews. (These

functions will be described in more detail in the section describing the user interface.)

All system information is stored in a MySQL database. This contains tables for students,

instructors, classes, sections, assignments, reviews, questions, and answers. Submitted

files are stored in Binary Large Object (BLOB) columns. The Java application accesses

the database using a standard Java Database Connection (JDBC) driver for MySQL

developers.

User Interface

All interface components were programmed manually in Java, using Java’s Swing

package. The user interface is divided into two different views: Instructor and Student.

After the validation module determines who the user is, the system displays the correct

view. The following subsections describe these views.

6

Student View

Figure 3 illustrates the Submit tab of the Student View interface.

Figure 3: Student View interface (Submit tab)

When a student logs on to the system, the application displays all classes in which the

student is currently enrolled. The student can switch between multiple classes using a

combo box at the top of the window. The rest of the window is a tabbed pane with a tab

that allows them to view their submissions, and a second tab to view their reviews. The

multiple tabs and corresponding views were created to avoid confusion over which

assignments are their own and which ones they have to review.

7

The Submit tab allows the user to:

• View a list of all assigned assignments and their due dates;

• Determine whether or not they have uploaded their submissions;

• Find the number of reviews that have been submitted for each submission;

• Submit an assignment;

• Check to make sure they are able to download their own submission;

• Delete their submission if they so choose;

• View reviews that have been submitted;

• Display the grading template that the reviewers will be using to review the

assignment.

The user is not allowed to submit an assignment or delete their submission after the

assignment’s due date is past. This prevents them from altering their submission after

seeing others’ assignments.

The Review tab (Figure 4) allows the user to:

• View all assignments they are assigned to review;

• View the review due date for each assignment;

• Download the assignment;

• Review other students' submissions, and modify their review if before the review due

date;

• View a read-only version of their review (after the review due date);

• Determine whether they have downloaded and/or submitted a review for each

assignment.

8

Figure 4: Student View Interface (Review tab)

The Download button in Figure 4 is disabled until after the submission due date so that

the student being reviewed has the opportunity to change their submission up to the due

date. The Review button is disabled until they have downloaded the submission to

encourage them to view the assignment before reviewing it.

Instructor View

The Instructor View (Figure 5) allows users to open a combo box and choose from all of

the classes they are teaching or have taught, all the semesters they have taught the

selected class, and all of the sections for the given semester of the given class. From those

selections, they can manage the classes, sections, and student enrollment from a separate

dialog.

9

Figure 5: Instructor View

This dialog displays combo boxes allowing the instructor to select classes, associated

sections, and associated students. The Manage Classes/Enroll feature allows instructors

to add new students to the database, and enroll students in selected sections. In order for

the students to be able to log in correctly, their username must match their username in

the university directory service that is being used for password validation. At our

university, instructors can obtain an auto-generated list of the students in their sections,

so there is an option to import a list of students using a specific text format.

The body of the instructor’s window consists of three panels: a list of assignments with

options to add, edit, delete and assign reviews for assignments; a list of the students in the

selected section and the status of their submissions and reviews; and, a panel with

information specific to the selected assignment and student. When assigning reviews for

an assignment, the instructor can manually select reviewer/reviewee pairings, or have the

program randomly assign reviews. The third panel shows the assignment’s submission

and review due dates, when the student submitted their assignment, who the reviewers

are, and when they submitted their reviews. The instructor can download the submission

and view the review questions with each reviewer’s answers to each question.

When adding and editing an assignment, a separate dialog appears that lets instructors

specify the name, due dates, and review questions for an assignment (see Figure 6).

10

Figure 6: Dialog for editing an assignment and specifying review questions

This interface component allows the instructor to specify the question type (text, radio

buttons, or check box), and create review questions and corresponding radio button or

check box labels. After the instructor creates the review, he or she can easily revisit the

review questions and edit them as needed.

11

Database Schema

Our system is built on a MySQL database that maintains various tables such as instructor,

student, class, assignment, and review to list a few. The design effectively manages the

large number of sections, semesters, and students that will eventually be entered into the

database by minimizing repeated data. Figure 7 shows the Entity-Relationship model for

the system's database.

Student and instructor data exists in two separate but similar database tables that connect

to a specific course section. Our database design allows us to track students that have

also enrolled in a specific course section but have dropped during the semester. This

makes it considerably easier for the instructor when assigning random reviewers for

assignments. An instructor is allowed to insert assignments into the assignment database

table for a specific course section. The assignment table stores details pertaining to the

due date of the assignment and the reviews. When an assignment is created, the

questions for reviewing are also stored. Our system currently allows text fields, radio

buttons, and check boxes to be created and stored in their respective database tables.

Once the instructor assigns the reviewers to reviewees, their student primary keys are

used to connect their stored files, answers, and submission times appropriately.

Submitted assignment files for review are zipped for simplified storage as Binary Large

Objects (BLOB) within the database, which reduces download time and storage. A

notable example of how our database retrieves data is when a student requests a

completed review done by a peer for a specific assignment. Queries are initially executed

to build the specific assignment’s review form created by the instructor. Using our

Figure 7: Database ER model

12

reviewer linking table, the review ID is found, which then links the reviewer and

reviewee. The reviewer’s comments on the student’s work are also inserted. This

functionality ensures that anonymity is maintained throughout the reviewing process.

Every interface in our system requires queried information from the MySQL database. A

Java class named QueryLibrary manages all of the database queries that need to be made

while a user navigates our peer review system. Each query is unique to the specific task

that is needed and is stored as a Java prepared statement object that allows us to query

and execute our MySQL statements multiple times efficiently.

Conclusions, Reflections, and Future Directions

The peer review system we developed successfully supports all of the basic requirements

of a peer review system: submitting assignments, distributing assignments to reviewers,

and administering reviews. It adds additional value over existing systems in the way it

provides flexibility in managing how reviewer assignments are managed (random vs.

non-random, and the number of reviewers per assignment), and how assessment rubrics

are structured (using a combination of text fields, radio buttons, and so forth).

While designing the peer review system, we overcame many challenges, particularly on

deciding how to design the database and how to work with JNLP technology. We went

through many iterations of our database schema as we identified everything that would

have to be stored for the peer review process. One issue included connecting enrolled

students in a specific class section with an instructor who teaches multiple classes. After

designing the class enrollment structure for the database, we had to decide on how

students would submit their assignments and store them in the database, ultimately

deciding on using BLOBs and a file zipping Java class. The actual review process and

the relationships that a single peer review shares with a particular assignment, associated

questions and answers, reviewer, and a student’s file was the toughest feat to overcome.

Our ER model expanded from four database tables to fourteen to manage the complex

relationships that the reviews share with every element. Before we could begin the

implementation of the actual interface, the ER model needed to be finalized because

minor changes later in development could prove troublesome. It was a burden to test

every possible query that we would require from our database before actually

implementing it, but it saved us a lot of time in the end because we did.

When we started creating the actual application and user interface, we had to decide on

our development platform. We wanted our program to work across different operating

systems, and with our MySQL database in place already, Java was an obvious choice. We

wanted the flexibility a fully fledged client application would allow, so after researching

different methods we decided on using Java Web Start (JavaWS) and JNLPs to deliver

the application. This proved to be more difficult than just writing a client application,

jarring it, and putting it on a website, though. In order for a JavaWS application to access

the user’s hard-drive, it has to be digitally signed, so we had to learn the whole process of

digital signatures and how Java implements it. We also ran into issues getting the JNLP

to include the MySQL driver as an external library. Once the system was mostly up and

13

running on the client, we had to start testing it as a JNLP, which exposed more issues that

were specific to applications running via JavaWS. Each of these hurdles forced us to

learn a lot because most often when you start looking into a problem, you find out that

the issue is far more complex than you initially thought, so we had to learn all about it

before we could fix the problem. As a result, we now know the basics as well as

subtleties of debugging database designs, basic web security, JavaWS application

distribution, and much more we ran into along the way.

The next step is to submit the system to a rigorous testing phase, and then use it in an

actual classroom setting to determine its viability in helping students see other ways of

solving a programming problem, and get the benefits of reviewing others’ work. This will

determine if the system is fulfilling all of the design requirements and especially to see if

it is enhancing students’ learning. We hope that the system can be used to support a

variety of academic classes, such as in English classes to review classmates’ papers. If

other universities or schools wanted to use the system, it could potentially be expanded

and modified to allow various different set-ups so it could be installed on a variety of

different campus database/directory systems.

References

1. Nunamaker, J.F., Chen, M., and Purdin, T.D.M. Systems development in

information systems research. J. MIS. Winter, 1990-91, Vol. 7, 3.

2. Morrison, J. and George, J.F. Exploring the Software Engineering Component in

MIS Research. Comm. of the ACM. July, 1995, Vol. 58, 7.

3. Lightweight Preliminary Peer Review: Does In-Class Peer Review Make Sense?

Denning, T., Kelly, M., Lindquist, D., Malani, R, Griswold, W.G. and Simon, B.
Portland, OR : ACM, SIGCSE 2007 Proceedings.

4. Wolfe, W.J. Online Student Peer Reviews. SIGITE 04 Proceedings.

5. Process Improvement of Peer Code Review and Behavior Analysis of its Participants.

Wang, Y., Li, Y., Collins, M., and Liu, P. Portland, OR : ACM, SIGCSE 08

Proceedings.

6. Electronic Peer Review and Peer Grading in Computer Science Courses. Gehringer,

E.F. Charlotte, NC : ACM, SIGCSE 2001 Proceedings.

7. Automatic Assignment Managementand Peer Evaluation. Trivedi, A., Kar, D.C., and

Patterson-McNeill, H. s.l. : Consortium for Computing in Small Colleges, 2003.

