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Abstract 
 

The set-covering problem is an interesting problem in computational complexity theory. 
In [CLR91], the set-covering problem has been proved to be NP hard and a greedy 
heuristic algorithm is presented to solve the problem. In [DYWM06], the set-covering 
problem is found to be equivalent to the problem of identifying redundant search engines 
on the Web, and finding efficient and effective practical algorithms to the problem 
becomes a key issue in building a vary large-scale Web metasearch engine. A new 
algorithm Check-And-Remove (CAR) is proposed in [DYWM06] with a better time 
complexity than the greedy algorithm presented in [CLR91]. However, in some cases the 
cover set produced by the new algorithm is too large to be acceptable. We propose some 
changes to the data structure that improve the performance of both algorithms. We also 
present a new greedy algorithm whose time complexity is the same as that of the CAR 
algorithm. The experimental results show that our final greedy algorithm runs faster than 
the CAR algorithm and produces better results in all test cases.  
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Introduction  
 
The set-covering problem is a well-defined mathematical problem and also an interesting 
problem in computational complexity theory. Given N sets, let X be the union of all the 
sets. An element is covered by a set if the element is in the set. A cover of X is a group of 
sets from the N sets such that every element of X is covered by at least one set in the 
group. The set-covering problem is to find a cover of X of the minimum size. In 
[CLR91], the problem is discussed in detail and is proved to be NP hard.  
Although the set-covering problem is an interesting problem in theory, it has not attracted 
much attention in research and industry communities, because no real applications were 
found to require a solution to the problem. In [DYWM06], the set-covering problem is 
found to be equivalent to the problem of identifying redundant search engines on the 
Web, and finding an effective and efficient practical algorithm to the problem becomes a 
key issue in building a vary large-scale Web meta-search engines.  
We need approximation solutions for this problem since the problem is NP hard. In 
[CLR91], a greedy approximation algorithm is presented with a time complexity of O(|M| 
* |N| * min(|M|, |N|)), where N is the number of sets and M is the number of all elements 
of the union of the N sets. In [DYWM06], a new algorithm called Check-And-Remove 
(CAR) is proposed and its time complexity is Ο(N * M). 
Some experimental results are reported in [DYWM06]. In all cases, the CAR algorithm 
runs much faster than the Greedy algorithm. The cover sizes from the two algorithms are 
very close to each other in most cases; but in one case where the actual minimum cover 
size is small with respect to the total number of sets, the cover size from the CAR 
algorithm is much larger than the actual minimum size, while that from the Greedy 
algorithm is very close to the actual minimum size. Some results from [DYWM06] are 
show in Table 1 and Figure 1. 
 

Cover Sizes from the Two Algorithms
Actual 100 200 300 400 500 600 700 800 900 1000 
Greedy 105.8 203.4 300.2 401.8 501 601.8 700.6 800.2 900.2 1000 
CAR 485.8 200 300 400 500 600 700 800 900 1000 

 
Table 1 

 
 
We have run the two algorithms with more data sets and observed the same results: The 
CAR algorithm is always much faster than the Greedy algorithm, but for some data sets 
the cover size from the CAR algorithm is larger than that from the Greedy algorithm.  
In this paper, we propose some changes to the data structure to improve the performance 
of both algorithms. We also present a new greedy algorithm whose time complexity is the 
same as that of the CAR algorithm. The experimental results show that our final greedy 
algorithm runs faster than the CAR algorithm and produces better results in all test cases.  
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Figure 1 
 
 
Data Generation 
 
The implementation reported in [DYWM06] takes a special approach to generate data. The 
minimum cover size (CoverSize) is determined before hand and is passed to the data 
generator program, which first generates CoverSize non-overlapping sets, then generates 
other sets by randomly selecting elements from the union of the CoverSize sets. After 
generating all the sets, it shuffles them and outputs data to data files. The advantage of 
the approach is that the minimum cover size is known, but the produced data sets may not 
represent general cases. 
We take a different approach to generate the test data. A range for the set size is decided 
before hand, and the size of each set is determined randomly according to the uniform or 
normal distribution. Similarly, a range for the elements (generated as integers but treated 
as strings by all algorithms) is given, and the elements are generated according the 
uniform or normal distribution. The minimum cover size is unknown, but by changing 
the ranges and the choice of distribution, more general data sets can be generated. We 
will use our test data sets in the paper, unless stated otherwise.  
 
 
Algorithm Greedy and Algorithm CAR  
 
The two algorithms are presented in Listing 1 and Listing 2, where ResultCover is the 
cover to be generated and Uncovered is the set of elements that are not covered by 
ResultCover. The greedy algorithm tries to find the best set (the one with the most 
uncovered elements) to add to the result cover; it should produce a better result (a smaller 
cover) and run slower, since it spends a lot of time to find the best set. The CAR 
algorithm takes the opposite approach: add any set to the result cover as long as it has at 
lease one uncovered element. The algorithm should run faster, but the produced result 
cover may not as good as that from the greedy algorithm. That is why the algorithm has a 
remove phase.  

2 
 



Notice that it is possible that a set is added to the result cover but could be removed from 
the result cover later after adding other sets to the result cover. For example, sets S1 = {1, 
2, 4} and S2 = {1, 2, 5} are added to the result cover first. After adding sets S3 = {1, 2, 
3} and S4 = {4, 5, 6}, S1 and S2 should be removed from the result set to get a better 
cover. 

 

 

Algorithm Greedy 
1. Set ResultCover to the empty set 
2. Set Uncovered to the union of all sets 
3. While Uncovered is not empty 

a. select a set S that is not in ResultCover and covers the most elements not covered by ResultCover 
b. add S to ResultCover 
c. remove all elements of S from Uncovered 

                                    Listing 1 
    

 

Algorithm CAR (Check And Remove) 
1. Set ResultCover to the empty set 
2. For each set S 

a. determine if S has an element that is not covered by ResultCover 
b. add S to ResultCover if S has such an element 
c. exit the for loop if ResultCover is a cover of X 

3. For each set S in ResultCover 
a. determine if S has an element that is not covered by any other set of ResultCover 
b. Remove S from ResultCover if S has no such an element 

                                 Listing 2 
 
 

Row-wise vs. Column-wise  
 
A matrix is used in [DYWM06] to represent the set-covering problem. Each row of the 
matrix represents a set and each column represents an element from the union of all the 
sets. The number of sets N is known and it is the number of rows of the matrix. The 
number of elements of each set is also known; but the number of elements of the union of 
the N sets (the number of columns) is unknown, since an element could be covered by 
multiple sets. The matrix in Table 2 represents the case with three sets and six elements. 
 

 a b c d e f
S1 0 1 1 0 1 0
S2 1 0 1 1 0 0
S3 1 1 0 1 0 1

 
Table 2 

 
The implementation in [DYWM06] uses a binary search tree to input data. Each node of 
the tree stores one element with a bitmap to indicate which sets cover the element. We 

3 
 



can see that the bitmap represents the corresponding column of the matrix. After the tree 
is built, it is converted to an array of bitmap and both algorithms work with the array.  
Both algorithms need to perform some operations on the rows of the matrix such as to 
find the number of elements in a set that are not covered by the result cover, to determine 
if a set contains an element that is not covered by the result cover, or to determine if a set 
in the result cover has an element that is not covered by any other sets in result cover. 
Since a bitmap represents a column of the matrix, the cost of going through one row of 
the matrix is close to going through the entire matrix.  
Our first improvement is to convert the binary search tree to an array of bitmap that 
represents a row of the matrix instead of a column. The running times of some test cases 
of the two algorithms on the two different data structures are shown in Table 3, 4 and 5, 
and the cover sizes are shown in Table 6. Because of the new approach to generate the 
test data, we do not know the actual minimum cover sizes. The running time includes the 
time to convert the tree to the bitmap array and the time to find a cover, but excludes the 
time to read data to the tree since it’s the same for both algorithms. 
Both algorithms remain the same, and the time complexity also remains the same. The 
conversion takes some extra time, and the running time of the CAR algorithm increases a 
little bit when the total running time is very short. For example, the running time 
(seconds) increases from 0.01 to 0.09, 0.12 to 0.31 and 0.31 to 0.39. But in all other 
cases, the running time is reduced a lot for both algorithms, especially for the Greedy 
algorithm. For example, the running time is reduced from 1.01 to 0.75, 11.15 to 3.27 and 
20.70 to 5.46 for the CAR algorithm, and from 0.63 to 0.28, 1220 to 161 and 5056 to 629 
for the Greedy algorithm.  
 

Running Times (seconds) for the Greedy Algorithm Using Column-Bitmap and Row-Bitmap 
Column 0.63 15.75 53.9 170 300 688 1220 1752 2130 2650 3457 4291 5056 
Row 0.28 2.62 7.6 23 41 90 161 170 274 350 437 555 629 

 
Table 3 

 
Running Times (seconds) for the CAR algorithm Using Column-Bitmap and Row-Bitmap 

Column 0.01 0.12 0.31 1.01 1.63 2.90 6.36 9.54 11.15 13.73 16.92 17.73 20.70 
Row 0.09 0.31 0.39 0.75 0.96 1.54 2.12 2.80 3.27 3.63 4.34 4.90 5.46 

 
Table 4 

 
Running Times (seconds) of the Two Algorithms Using Row-Bitmap 

Greed 0.28 2.62 7.58 22.79 40.53 89.7 161.4 170.1 274.2 350.4 436.7 555.2 628.9 
CAR 0.09 0.31 0.39 0.75 0.96 1.5 2.1 2.8 3.2 3.6 4.3 4.9 5.5 

 
Table 5 

 
The Greedy algorithm still runs much slower than the CAR algorithm, because it has a 
higher time complexity. But it produces smaller cover sets in most cases: 10 to 16, 301 to 
357, and 625 to 648. Only when the cover size is close to the total number of sets, the 
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cover size by the Greedy algorithm is slightly larger than that by the CAR algorithm: 715 
to 704, 849 to 824, and 984 to 975.  
 

Cover sizes of the two algorithms on some data sets 
Column 10 40 87 135 191 301 424 567 625 715 849 935 984 
Row 16 58 120 177 235 357 467 590 648 704 824 914 975 
 

Table 6 
 

The Greedy algorithm always tries to find the best set (the one with the most elements 
not covered by the result cover) to add to the result cover. It should produce better results 
in most cases, but it spends a lot of time to find the best set and pays a much higher cost 
for being greedy. 
 
 
Algorithm Greedy Update  
 
To improve the efficiency of algorithm Greedy, we modified it by keeping the count of 
elements of each set that have not been covered by the result cover and updating the 
counts when a new set is added to the result cover.  
 
 
 
 
 
 
 
 
 

Algorithm Greedy Update 
1. Set ResultCover to the empty set 
2. Set Uncovered to the union of all sets 
3. For each set, set the UncoveredCount to the size of the set 
4. While Uncovered is not empty 

a. select a set that has the largest value of UncoveredCount among all sets not in ResultCover 
b. add the set to ResultCover 
c. remove all elements of the set from Uncovered 
d. update the value of UncoveredCount for each set not in ResultCover 

 
Listing 3 

 
 

The major issue here is to update the count of uncovered elements for each set. Before a 
set is added to the result cover, each element in the set is examined to see if the result 
cover already covers it. Nothing needs to be done if the element is covered already; 
otherwise, each set not in the result cover is examined,  and its uncovered count is 
decremented by one if the set contains the element.  
In the following example (Table 7, 8 and 9), there are three sets and six elements. At 
beginning, no elements are covered by the result cover, the uncovered count is 3, 3 and 4 
for the three sets, respectively. Set S3 has the largest uncovered count and is added to the 
result cover first, indicated by (*) in the middle table. The uncovered count for S1 is 
updated from 3 to 2, since it contains one element of S3 (b); the uncovered count of S2 is 
updated from 3 to 1, since it contains two elements of S3 (a and d). Now S1 has the 
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largest uncovered count, and is added to the result cover, indicated by (*) in the right 
most table ((#) indicates S3 was added to the result set before). S1 contains three 
elements, but element b is covered by the result cover before adding S1, and only 
elements c and e are examined. The uncovered count of S2 is updated from 1 to 0, since 
it contains element c.  

 

 a b c d e f 
S1 (3) 0 1 1 0 1 0 
S2 (3) 1 0 1 1 0 0 
S3 (4) 1 1 0 1 0 1 

ResultCover 0 0 0 0 0 0 

 a B c d e f
S1 (2) 0 1 1 0 1 0
S2 (1) 1 0 1 1 0 0
S3 (*) 1 1 0 1 0 1

ResultCover 1 1 0 1 0 1

 a b c d e f
S1 (*) 0 1 1 0 1 0
S2 (0) 1 0 1 1 0 0
S3 (#) 1 1 0 1 0 1

ResultCover 1 1 1 1 1 1

                   Table 7                                   Table 8                                 Table 9 
 

For each element, the first time it is covered by the result cover, all sets not in the result 
cover will be examined to see if the set contains the element. This can be done easily as 
long as the index position is maintained.  Thus the time complexity is the same as that of 
the CAR algorithm, Ο(N * M), where N is the number of all sets and M is the number of 
elements of the union of all sets. The experimental results in Table 10 show the running 
time of the Greedy Update algorithm is still larger than that of the CAR algorithm, but it 
is at the same magnitude as algorithm CAR. 
 
 

Running times of the two algorithms 
GreedyUpdat 0.15 0.51 0.92 1.65 2.26 3.70 5.13 6.16 7.31 8.53 10.18 18.49 13.09 
CAR 0.09 0.31 0.39 0.75 0.96 1.50 2.12 2.80 3.27 3.63 4.34 4.90 5.46 

 
Table 10 

 
 
Algorithm List And Remove (LAR) 
 
Finally we implement the matrix using linked list. As we know, linked list works more 
efficiently for a sparse matrix. When the matrix is dense, the cover size will be small and 
the running time should be very short. We also add the remove phase to the greedy 
algorithm and call it Algorithm List And Remove (LAR). The algorithm is in Listing 4. 
 
Although the time complexity remains the same for both algorithms, Algorithm LAR 
runs faster than Algorithm CAR in all cases. This is the advantage of combining linked 
list and updating the uncovered count for each set. Furthermore, the cover size from 
algorithm LAR is smaller than that from algorithm CAR in all cases. See Table 11 and 12 
for more details. 
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Listing 4 

 
 

Running Times of Algorithm LAR and Algorithm CAR 
LAR 0.21 0.27 0.35 0.43 0.51 0.68 0.86 1.03 1.11 1.22 1.40 1.53 1.66 
CAR 0.26 0.39 0.49 0.57 0.65 0.83 1.01 1.17 1.24 1.33 1.46 1.56 1.67 

 
Table 11 

 
Cover Sizes of Algorithm LAR and Algorithm CAR 

LAR 10 40 87 134 191 299 422 556 607 686 815 910 971 
CAR 16 58 120 177 235 357 467 590 648 704 824 914 975 

 

Algorithm List and Remove (LAR) 
1. Set ResultCover to the empty set 
2. Set Uncovered to the union of all sets 
3. For each set, set the UncoveredCount to the size of the set 
4. While Uncovered is not empty 

a. select a set that has the largest value of UncoveredCount among all sets not in ResultCover 
b. add the set to ResultCover 
c. remove all elements of the set from Uncovered 
d. update the value of UncoveredCount for each set not in ResultCover 

5. For each set S in ResultCover 
e. determine if S has an element that is not covered by any other set of ResultCover 
f. remove S from ResultCover if S has no such an element 

Table 12 
 

For the data sets generated in our experiments, we do not know the actual cover size, and 
it’s not practical to find the actual size. We have run both algorithm CAR and algorithm 
LAR on the data sets generated by the approach from [DYWM06]. The cover sizes are 
displayed in Table 13. Recall that in this approach the actual cover size (CoverSize) is 
decided first, then CoverSize non-disjoint sets are generated, and other sets are generated 
by selecting elements from the union of the CoverSize sets. The total number of sets is 
fixed at 1000. The cover size from algorithm LAR is the same as the actual size in all 
cases. This is because the greedy algorithm is always trying to find the best sets to add to 
the result cover and will find the non-disjoint sets. For algorithm CAR, the cover size is 
the same as the actual cover size when the cover size is 200 and above; but when the 
actual cover size is smaller, the cover size is much larger than the actual size; this is 
because many other sets are selected before any of the non-disjoint sets gets a chance to 
be selected. 
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Cover Sizes of Algorithm LAR and Algorithm CAR 
Actual 50 60 70 80 90 100 110 120 200 300 500 700 900 
LAR 50 60 70 80 90 100 110 120 200 300 500 700 900 
CAR 291 352 391 452 496 522 528 538 200 300 500 700 900 

Table 13 
 
 

Summary 
 
We proposed a new version of greedy algorithm for the set-covering problem based on 
linked list presentation of a matrix and updating the uncovered count for each set. Our 
algorithm runs faster than the previous presented algorithm CAR and generates smaller 
result cover in all test cases. 
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