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Abstract

The Hough transform is a well-known pattern rectgni technique for finding parametric
curves and general shapes in an image. This résdamonstrates that it is equally well suited
for real-time symbol detection. Both the parameamc generalized Hough transforms produce
results of high accuracy and excellent performancesal-time video streams, compared with
classical techniques such as correlation-basedl&enmatching. Using the Hough transform,
detection of reasonably sized features may be pee at video frame rates, sufficient for most
real-time pattern recognition tasks. Video imadeoyn an unmanned aerial vehicle competition
is used for illustration.



I ntroduction

The Hough transform is an ingenious algorithm fodihg parametric curves and general shapes
in an image. It was originally patented in 1962 Hgugh for line detection [5]. Since then,
ongoing interest in the computer vision/patternogeation field has resulted in a rich set of
variations on Hough's original algorithm. Particlyanoteworthy are line detection using polar
(rather than Cartesian) parameterization [3], Uséh@ gradient direction to increase efficiency
[7], and the extension to circles and other singdeametric curves [6]. Ballard's generalized
Hough transform [1] is an alternative approach tisasimilar to correlation-based template
matching [8]. With a strong theoretical framewodk qupport it, the Hough transform is now
considered to be a fundamental methodology in feagxtraction and shape detection [2].

Perhaps the most basic approach to object deteatian digital image is correlation-based
template matching [4]. In this technique, the teatglcontaining the object to be located is
correlated with the image at all points. If the pdate match is sufficiently close, as indicated by
a high value for the cross-correlation, that pairthe image is labeled as an object “hit”.

Template matching is problematic for several reasbirst, the scale of the object template must
match the size of the object in the image. Sectms orientation of the object in the template
and the image must correspond closely. And fina#lypplate matching is slow. The underlying
mathematical foundation for template matching isoarelation between the template and the
image. For anMxM template and arNxN image, correlation is af©O(MN?) operation.
Performance issues make standard template matcimmgiemented in software on current
processors, fundamentally unsuitable for real-tidetection of large targets in video image
streams. Hierarchical approaches [9] can improvdoprance, but efficiency is ultimately
limited by the complexity of the correlation opeoat

The Hough transform [6] overcomes many problemsa@sated with template matching. First,

the parametric Hough transform is much more effictban brute force approaches for detecting
simple parametric curves. The general Hough tramsfallows detection of arbitrary shapes,

without the efficiency issues associated with datren-based template matching. And finally,

the both versions of the Hough transform may beensadle- and rotation-independent.

1 Mathematical foundations of the Hough transform

1.1 Hough line detection

The Hough transform is a voting/popularity algamthPoints of interest in the image are used to
increment points in parameter space, representethtaccumulator array. The original version
of the Hough transform [5] detected straight linseng the parametric equatign mx+b. This
parametric formulation maps points in imagéx,y) space into parametek(mb) space as



follows. First, an edge detector (typically the Slobdge operator) is applied to the im&gry),
producing an edge magnitude nt&a@,y). Then, for each edge pix@ly) in the image, points are
incremented in parameter space for every possiiad€rh,b) that runs through that point.

1) Apply the Sobel edge operator to the image F(x,y ), and compute the
gradient magnitude E(x,y) at each pixel.

2) Build the accumulator array:
for each x
for eachy
if ( E(x,y) > threshold )
for each quantized value of m
compute: b=y-mx
increment: A[m][b]++

3) Search the accumulator array for maxima.

Algorithm 1. Hough line detection.

After all edge points have been processed, thenaglatior arrayA is searched for maxima. Each
edge pixel increments a set of accumulator arraynents; howeverk collinear edge pixels
along the liney=mx+b will cause one particular [A][b] location to be incrementektimes.
Maximal values in the accumulator thus corresponthé most prominent lines in the image.

There are two obvious problems with §wemx+b parameterization of a straight line: the infinite
slope of a vertical line, and the markedly nonlmemantization ofm. A superior line
parameterization was proposed by Duda and Ha®72 1[3], using

P =X [€0sO +y [En8
In this formulation,@ is the angle of the perpendicular from the origirthe line, ang is the
distance along this perpendicular. Unlike@may be quantized linearly betweehahd 360.

1.2 Hough circle detection

Extension to other parametric curves involves aedisionality increase for every additional
parameter. For example, the circular Hough transfi@] uses the parametric equation

(X =x)* #(y —ye)* =r°
Three circle parameters (center positfryly.) and radius) require a 3-D accumulator array and
a doubly nested loop to compute all possible cemisitions for each possible radius. Similarly,
the parametric equation of an ellipse requires fmnameters, a 4-D accumulator array, and a
triply nested loop. This dimensionality increasekesathe Hough transform inappropriate for
more complex parametric curves.

The Hough circle detection algorithm was implemdnie this research, and bears a closer
examination. Again, the polar parameterization psoto be a superior formulation:



X=X+ R/¢osé
y=Y.+ R/&nd

To locate circles with a fixed radilsin the image, the basic approach is:

1) Apply the Sobel edge operator to the image F(x,y ), and compute the
gradient magnitude E(x,y) at each pixel.
2) Build the accumulator array:
for each x
for each y
if ( E(x,y) > threshold )
for each quantized value of )
compute: X ¢ =X—R*cos 8
y ¢=yYy—-R*sin 6

increment: Alx Ay o+t
3) Search the accumulator array for maxima, which c orrespond to circle
centers in the image.

Algorithm 2: Hough circle detection.

This algorithm iSO(N“M) for anNxN image andV quantized values of theta. Typical values for
M are 360 (1resolution) or 120 (3resolution).

A significant efficiency increase is obtained byngsgradient direction information to guide the
voting in parameter space [2]. Rather than increamg®\[ x;] [y for all possible values @&, the
gradient angle may be estimated from the Sobeladper
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Figure 1: Sobel edge operator.

The magnitude of the gradient is given G = \/ze +Gy2 , and the direction of the gradient is

G
given by9 =tan l(G—yj Since the direction towards the circle center l@gstimated from the

X

Sobel operator, and the radiRss known, a much more efficient circle detectidgoaithm is



1) Apply the Sobel edge operator to the image F(x,y ), and compute the
gradient magnitude E(x,y) at each pixel.

2) Build the accumulator array:

for each x
for each y
if ( E(x,y) > threshold )
compute: X c=X—-R*G G
Yy ¢=y—-R*G v G
increment:  A[x Ay o+t
3) Search the accumulator array for maxima, which c orrespond to circle

centers in the image.

Algorithm 3: Efficient Hough circle detection.

This algorithm isO(N?) for anNxN image. Estimating a single value 8fn this fashion, rather
than iterating through all quantized values of @ahéypically speeds up the algorithm by at least
two orders of magnitude.

1.3 Generalized Hough transform

The generalized Hough transform allows efficienttedgon of arbitrary shapes. As in
correlation-based template matching, a templatéagang the shape to be detected is required.
Unlike correlation, however, only boundary pixete gypically used for matching.

The template is preprocessed to produceRaable, which contains information about the
position and orientation of boundary points, refatio a reference point (typically the centroid)
in the template. ThB-table is produced as follows:



1) Apply the Sobel edge operator to the template T(
gradient magnitude E(x,y) at each pixel.

2) Determine the reference point (centroid):
for each x
for eachy
if ( E(x,y) > threshold )
X ref t=X
Y et =Y,
n++;
Xret 1= 1;
Vet 1=,

3) Build the R-table:
for each x
for eachy
if ( E(x,y) > threshold )

G
6 = tan'l( y]
GX

F =k =22+ (Yo —Y)?
_ _1[(yref - y)J
a=tan| ——
(Xref - X)
store (r, o) in R-table[ 0]

X,y), and compute the

Algorithm 4: R-table generation.

The R-table stores the distance)(and orientation ) of each boundary point relative to the
reference poin(X.;Yrer), iNdexed by the gradient directioth Since more than one boundary
point may have the same gradient direction, a tink& of (r,a) pairs may be used fd&r-table
entries. Generating thB-table is a one-time operation of complexi§(M?) for an MxM

template.

TheR-table is then used to detect instances of the temptateei imagd=(x,y):




1) Apply the Sobel edge operator to the image F(x,y ), and compute the
gradient magnitude E(x,y) at each pixel.

2) Build the accumulator array:
for each x
for each y
if ( E(x,y) > threshold )
e=tan 1(G,/Gy)
for each (r, o) pair stored in R-table[ o]
X ¢ =X+r*cos o
y c=Yy+r*sin o
Ax Y o

3) Search the accumulator array for maxima, which c orrespond to positions of
the template in the image.

Algorithm 5: Generalized Hough.

The generalized Hough transform is less efficidvantthe circular (or linear) Hough, with a
complexity of O(N’E) for anNxN image ancE edge pixels stored in the R-table. However, it is
significantly more efficient than correlation-bastemplate matching, with a complexity of
O(N?M?) for anNxN image and aMxM template. To state it another way, the numberixsglg
that comprise a shape boundary is much smaller theamumber of pixels that make up its
entirety. A large speedup over template matchimgthas be expected.

2 Real-time symbol detection

Competitive interdisciplinary student teams areimportant part of the learning experience at
the South Dakota School of Mines and TechnologySBIRT). In recent years, the SDSM&T
Unmanned Aerial Vehicle (UAV) Team has competedtha International Aerial Robotics
Competition (IARC) [10,11] with great success (fiptace in 2006, second place in 2007).

The current IARC mission simulates hostage, ramliahazard, and biohazard scenarios [10].
One critical stage of the mission involves detettd a 1m diameter IARC symbol on the side
of a building, and identification of nearby openndows and doorways. The IARC symbol,

attached to the side of a building at the 2006 aitipn site, is shown in Figure 1. Nearby open
windows and doorways are clearly visible.



Figure 2: IARC syl o a bidin a Frt Benning, GA.

Like most competitive teams, the SDSM&T UAV Teancigrently using a rotor craft (small
helicopter) to complete the IARC mission stages.oftirboard digital camera captures 800x600
images at video frame rates. A single board commputé an Intel Pentium Core Duo processor,
2G of RAM, and 8G flash memory provides onboardcpssing power. Symbol detection
software is written in C++, and runs under Linux.

The Hough transform offers an attractive alterreativ correlation-based template matching for
detection of the IARC symbol in real-time videcestms. Hough line detection is not particularly
appropriate for this application, due to the matmaight lines forms by building, door, and

window boundaries. However, Hough circle deteci®promising. There are few circles in the
competition scene, other than the IARC symbol. §aereralized Hough is another worthwhile
alternative that was explored in this research.

3 Results

The parametric Hough circle detection algorithm wested on video streams captured from the
onboard digital camera at the IARC 2007 competitibhe video imagery was of rather low
quality. Examination of individual frames showedprsficant levels of noise, blurring due to
vibration, and small rotations caused by pitchimgl aawing of the helicopter in flight. In
addition, improper camera exposure settings resuttextremely dark images.

However, as long as a reasonable estimation dhtiget size (or distance) could be obtained, the
Hough circle detection algorithm worked extremeiiwDetection accuracy was close to 100%,
with very few false positives. Extremely blurredifies can make detection difficult, when it

becomes impossible to extract a good target boynaldin the Sobel edge operator. Processing
speed was extremely high, running at frame ratesvef 70 fps. This high speed allows for size

bracketing (e.g., testing three different circldieat video frame rates.



The generalized Hough also performed extremely,vibeith in accuracy and speed. Accuracy
was better than the Hough circle detection approasmight be expected, since all edge pixels
in the target (not just the circular boundary) ased for matching. Symbol detection was robust,
even with extremely blurred frames, and very compl in accuracy to template matching.

Remarkably enough, the generalized Hough transfmmoduced good matches even when the
symbol size was off by 50% or more. This may be tue fortuitous template (notably the inner

“X” that separates the I-A-R-C letters in the syM)b&peed was about 50% slower than the
circular Hough, but still produced frame rates pfta 50 fps.

A speed comparison of standard correlation-basetpltde matching, hierarchical template
matching, the general Hough transform, and thaitdardHough transform is given in Table 1:

Met hod Ave_rage time to process Frames per second
a single frane (seconds)

Standard template matching 6.13 0.16

Hierarchical correlation 0.444 2.25

Hierarchical correlation * 0.502 2.00

Generalized Hough 0.020 50

Circular Hough 0.014 71

Table 1: Comparison of detection algorithms (* three dirzackets).

These timings were obtained on an Intel Q6600 (BZ2Guad core) processor, using an 800x600
video frame size and 60x60 IARC symbol templaterétichical correlation provides an order of
magnitude speedup over standard template matchurgstill only processes about 2 fps. Both
versions of the Hough transform operate at speetlsower video frames rates (15-30 fps).

Figure 3 is a typical example of symbol detecti@ng the Hough circle detection algorithm.
Due to poor camera exposure settings, the originadje was very dark. Histogram equalization
makes the buildings and IARC symbol visible. Théedeed symbol has been outlined in red;
nearby windows have also been successfully detgtigdn entirely different algorithm) and
marked in green. The scaled accumulator arrays gthown. The bright cell that corresponds to
the symbol location is readily discernable.



igure3: é) Hough circle detection. b) Accumulator array

Figure 4 is a similar example using the general gotransform. The accumulator array is
noticeably cleaner (less noisy) than the Houghleiaccumulator displayed in Figure 3b. This
undoubtedly contributes to more robust symbol detec

igue4: a) Generalized Hough symbol etection. b) Accuataularray.

Figure 5 further illustrates the robustness of gemeral Hough transform. Even when the
template size is grossly incorrect, partial matatélsproduce the desired result.



T

igure: ) Half size template. b) Accumulator array.

Conclusions

The Hough transform provides an efficient and rolagproach to real-time symbol detection in
video imagery. Efficiency issues associated withradation-based template matching are
overcome with this methodology. Symbol detectionuaacy is extremely high with both the

parametric and generalized Hough transform. ThegHocircle detection algorithm runs at

extremely high speed, more than twice video fraates: The generalized Hough algorithm runs
a bit more slowly (about twice video frame ratd®m)t provides more robust, as well as more
general, feature detection.
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