Symbolic Computation using Grammatical
Evolution

Alan Christianson
Department of Mathematics and Computer Science
South Dakota School of Mines and Technology
Rapid City, SD 57701
Alan.Christianson@mines.sdsmt.edu

Jeff McGough Department of Mathematics and Computer Seienc
South Dakota School of Mines and Technology
Rapid City, SD 57701
Jeff. McGough@sdsmt.edu

March 20, 2009

Abstract

Evolutionary Algorithms have demonstrated results in & aasy of optimization prob-
lems and are regularly employed in engineering design. kewenany mathematical
problems have shown traditional methods to be the moretaféeapproach. In the case
of symbolic computation, it may be difficult or not feasibteextend numerical approachs
and thus leave the door open to other methods.

In this paper, we study the application of a grammar-baspdagh in Evolutionary Com-
puting known as Grammatical Evolution (GE) to a selectetbiamm in control theory.
Grammatical evolution is a variation of genetic programgnirGE does not operate di-
rectly on the expression but following a lead from naturerectly through genome strings.
These evolved strings are used to select production rulasBNF grammar to generate
algebraic expressions which are potential solutions toptioblem at hand. Traditional
approaches have been plagued by unrestrained expresesiwthgstagnation and lack of
convergence. These are addressed by the more biologiealigtic BNF representation
and variations in the genetic operators.

1 Introduction

Control Theory is a well established field which concernslitwith the modeling and reg-
ulation of dynamical processes. The discipline brings sbbuathematical tools to address
many questions in process control. The mathematics are byeams a well defined list of
equations to apply and for some problems, the tools are inade.

One of the basic questions in control theory is about the terrg dynamics of a system un-
der study. Many of the models of systems involve differdr@guations and some of these
are nonlinear problems. The nonlinearity prevents us fréaiaing an explicit analytic
representation of the solution. Numerical methods ardaeaiand can provide solutions
to a very high degree of accuracy. However, numerical aghesdo not give a general
gualitative description. So alternate methods are requoeliscuss what happens to the
solution dynamics in a generic sense. One tool to addresprtidem is the Lyapunov
function. It is a function which can shed some light on thaerysdynamics.

Although a Lyapunov function has a very precise definitidrg tlefinition is in no way
constructive. The definition is more of a list of conditionkieh must be satisfied. To
make matters worse, the list of conditions does not lead toigue object. Several dif-
ferent functions may satisfy the definition of a Lyapunovdtion and all provide different
information.

Our goal here is to illustrate the methods without gettingechdown in excessive machin-
ery required to treat general systems. So, we restrict thébeuof dependent variables to
N = 2. The dynamical system we will focus on is

le_f:f(‘I?y)? %zg(x,y)

The functionsf andg are assumed to be continuously differentiable in a ope# setR?.
This assures us of local existence and uniquess of solusonge actually have solutions
to discuss. The question then is given this system, can vekgbtbe long term dynamics.
In other words, what happens¢t) andy(t) ast — oo. Assume for a moment that there
was a point i, (a,b), for which f(a,b) = g(a,b) = 0. This would be a point where all
motion stopped. It is known as a rest point. We refine our guesind ask ifc(t) — a and
y(t) — bast — oo? This would tell us that the dynamics settles down to this pest
and thus tells us the behaviour of our system.

A candidate Lyapunov function is a functidriz, y) : R* — R which satisfies

e L(a,b) =0,
o L(x,y) > 0for (z,y) € U\ {(a,b)}.

Simply stated this is a locally positive function away frohetpoint(a,b). Lyapunov
proved that if we also know that

oL

o G fe) + 5 ola) < 0foral (5,9) € U\ {(a.0)

thenz(t) — a andy(t) — b ast — oo. This is known as stability. The point (a,b) is stable
or it attracts the solution (sometimes called an attract®éhe problem is simple. Find a
function that satisfies the three conditions and we are défeewill have proved stability.
Since Lyapunov gave conditions to satisfy, but not a constreitheorem, how can we find
these functions?

It turns out to be very difficult in practice. Especially wharpractice we are also interested
in gaining the largest séf possible. This casts our problem as a search and optimizatio
problem. For this we turn to evolutionary algorithms. They@act as both search and
optimization approaches. There are different flavors ofwianary algorithms and we
choose a variation of one known as genetic programming.

Genetic Programming is a very successful and popular foraveolutionary computation.
Koza and others (http://www.genetic-programming.org)ehdemonstrated the effective-
ness of genetic programming in a diverse set of optimizgiroblems such as circuit lay-
out, antenna design, optical lens design, program geonaratid geometric optimization.
Our interest is that genetic programming has been sucdlgysafiplied in symbolic alge-
bra problems. The Lyanpunov problem can be cast as an optimnizproblem involving
symbolic algebra.

Genetic programs, like evolutionary algorithms in geneanaé the metaphor of biological
evolution. First, it must represent candidate solutionsame encoded fashion. A collec-
tion of candidate solutions is normally generated; oftenedandomly. Continuing with

the metaphor, a subpopulation is selected and two pringghetic operators are applied:
that of mutation and recombination. This process of saactnutation and recombination
is repeated until a candidate solution satisfies the saluatiberion. The specifics of selec-
tion, mutation and recombination, as well as additionalapens on the population define
the type of evolutionary algorithm. Pseudo-code for ther@ggh is given in Figure 1. For
more information on the breadth of the subject see [1, 3, 4].

A standard test problem in genetic programming is symbeligession. GP is successful
on the classical numerical regression problems even ifnbtdhe fastest way to approach
curve fitting. Unlike traditional regression where the ftioc form is fixed and coefficients
are desired, genetic programs may also be used to do synnégiession which addresses
the actual function form in addition to the coefficients. irsymbolic regression aims at
producing a function which “fits” a data set, it opens up tiadal areas of mathematics
such as finding analytic solutions to differential equadifiy 5].

Initialize the population

Rank the population

Repeat until termination is met
Select parents
Recombination and mutation applied to produce new members
Rank population

Figure 1. Evolutionary Algorithm

2 TheBasic Genetic Program

A common approach in GP is to use an S-expression grammahndatoring of expres-
sions. A valid S-expression is an identifier (a letter), astant (floating point value), or an
operation (a binary operation) along with its operands cWimust be valid S-expressions
themselves. To encode a quadratic:

ar® +br+c — (+ec(xxz(+b(*xax))).

S-expressions are easily stored and manipulated as treeh |&f node corresponds to
either an identifier or a constant, and the other nodes asryboperators. Evaluating an
expression is simply evaluating the tree (depth-first aligor to calculate the return value
of the equation).

Given a specific quadratic, we can define a measure of how ligliriterpolates a data set
by looking at the difference between the data points andulhégtic. For example, assume
that we have the points (1,3), (4,7), (0,0), (-2, 5) and weetihe polynomiap(z) = 2% +1.
We compute

Ip(1) =3[+ [p(4) = 7| + |p(0) = O] + [p(=2) = 5] = [= 1| + |[10[+ [1] + |0 = 12.

The smaller this error, the better the fit of the polynomialite data set. In general this
error may be written as
N—-1
€= Z Ip(z:) — il
=0

This sum is used to define the fithess function.

A population of possible functions may be formed. Using thierdunction, we can assign

a fitness for each individual, with a smaller error corregpog to a higher fitness. This

can be used to select subgroups of the overall populatiarteShe individuals are repre-
sented as trees, the genetic operators must act on the titeestvdestroying the tree. The

mutation operator can be a simple random change of a node valype. Recombination

may act by exchanging randomly selected subtrees betwespadvent trees. By using

the selection, mutation and recombination operations@levgain the basis for a genetic
program.

Selection of parents may be done in a variety of ways. An g¥feapproach is to randomly
select parents from the population using a biased selestioeme where the bias is based
on fitness. The process will normalize the fithess between @ aNext, generate a random
number and randomly pick an individual. If the normalizeddsgs is above the random
number, then keep the individual as a parent. After selectivze two genetic operators
(recombination and mutation) are applied. For mutatiore oray randomly select and
change an element in the tree. For recombination, two paeeetselected and in each a
subtree is selected. These subtrees are exchanged. Ttespieates the new generation
and we begin the cycle over.

This approach has been made popular by Koza, but sucessfglgmented by many au-
thors. However, it is not without problems The firstis thatdwea’t seem to get convergence
in the traditional sense due to stagnation. In this caseydbpelation does not appear to be
converging on a solution and seems to be stuck in the searath@r problem is that very
large expressions are rapidly generated due to the natuteeafcombination operator.
These large expressions quickly come to dominate the popuojaesulting in extensive
memory use and longer CPU times. Based on the reported pmeliteind with classical
GP, we decided to try a modification of the approach.

3 Grammatical Evolution

The central question remains: “can one evolve a Lyapunoxtimi? Expression bloat
was a serious problem and would cause the computation toatague to excessive re-
source requirements; this problem in GP is noted in [7, 8]iairdsuggested that the less
destructive crossover operator in GE is responsible fordé@ease in bloat when com-
pared to similar implementations of GP. A different type n€eding scheme was explored
to combat this problem. The new scheme was one designed ®calosely model the bi-
ological systems on which evolutionary approaches arechdde physical expressions of
traits, phenotypes, are not coded directly on the genome.inffbrmation on the genome,
the genotype, is translated from DNA to RNA and then to priteilrhese proteins will di-
rect the construction of physical features. Very compagtisaces can direct complicated
structures due to the encoding. A similar approach is negdgenetic programming.

Grammatical evolution is an evolutionary algorithm whiaparates genotype and phe-
notype, allowing simple definition of the candidate solatand the flexibility to alter or
replace the search algorithm. The genotype to phenotypslatzon, which is analogous
to biological gene expression, is performed by interpgeircontext free grammar stored
in Backus Naur Form (BNF) and selecting production rulesnftbat grammar based on
the codons which make up the genotype. The use of a contexgfeenmar to direct the
creation of candidate solutions allows a greater level atrab over their length and form
than does traditional GP. The particular flavor of GE in us¢hasmproblem is driven by a
steady state genetic algorithm using a variable lengthgeno

The steady state form of GA involves introducing only a sengéw individual in a given
generation, unlike traditional generational models inclra significant portion of the pop-
ulation is replaced in a given generation. Steady state G#es been found to outperform
generational GAs in a number of applications, both with aitlaut GE. This application
also utilized a feature of GE known as wrapping, meaning thgan reaching the end of the
genotype, further production rules may be selected byistpover again at the first codon.
This wrapping is implemented with a limit to avoid unboun@sg@ansion of nonterminals
in the grammar. This limits the amount of time spent in theegexpression as well as
the maximum length of the resulting phenotype. The fitnetsroenation is performed by
direct evaluation of the expressions (as opposed to gengr@attual programs, compiling
them, etc. as is often done with pure GP) using a free parieddparser.

Although the decision to use GE was driven by the desire ttrobtie candidate solutions
in terms of both length and form, certain problems also nequomplicated crossover
code to prevent the formation of nonsensical trees. The mi@nrbased construction of
GE allows a simpler and finer control over candidate length fanm. Domain specific

knowledge can easily be included in the grammar to intallilydimit the solution search

space.

A BNF grammar is one that is built from terminals, objectsttage represented in the
language such as constants, variables, and operators,cemehén-terminals, objects that
can be expanded into terminals or other non-terminals. ytioearepresented by the 4-tuple
{N,T, P,S}, where for this applicationN = {expr, op, preop,var}, is the set of non-
terminals;7 = {+, —, %, /,(,), X, 1.0,2.0,...,9.0} is the set of terminals; anfl € N, a
start symbol; and® is the set of production rules, see Figure 2. Using the BNigrar,
an equation is formed from an integer string by applying thedpction rules which are
selected based on the integer values.

(1) <expr> = <expr> <op> <expr> (A) (3) <pre-op>::= sqrt (A)
| (<expr> <op> <expr>) (B)
| <pre-op> (<expr>) (© (4) <var> = X (A)
| <var> (D) | 1.0 (B)
(2) <op> n= o+ (A) | 9.0 @)
| - (B)
I * (©)

/ (D)

Figure 2: Production rules

The rest of grammatical evolution is consistent with otleenfs of evolutionary algorithms.
Algebraic expressions are represented via the string wheeBNF grammar uses to create
a individual as described above. A population is formecrofandomly to start, ot indi-
viduals. The normal process of selecting parents, crossovkemutation are applied to the
population. Selection normally is some type of stochagijmra@ach where the probability
of selection is based on the fitness. This is used to produegrganeration. This process

is repeated until a candidate solution is found or the marargeneration count occurs.

Grammatical Evolution first distinguishes itself by the fpemance gains. GE on aver-
age uses significantly less memory than a comparable GP nmepiation and has a cor-
responding decrease in runtime compared to GP. Thesedtiffes are due both to the
compact binary representation of the genotype and thefeignt decrease in bloat of the
resulting phenotype.

4 Algorithm details

The solution space is searched using a fixed size populgprach. An initial popula-
tion is generated by creating vectors (individuals) of randomly-generated integersolhi
serve as the codons of the individuals. They are replace@dibaéme as individuals with
higher fithess are created via crossover or other meansgding the new initialization of
individuals using the same technique as that used in thé@neat the initial population.

As previously mentioned, evaluation of a candidate Lyapuooction L(x, y) depends on
the satisfaction of three conditions

e [(a,b) =0,
o L(x,y) > 0for (z,y) € U\ {(a,b)}.

o G o)+ 5 ala) < 0foral (n,9) € U\ {(a.0)

For a given systent'(x, y), G(z,y) a region surrounding the rest poift, b) is selected
as the region of interest from which the points comprisirgygbtlU are selected. For this
problem a user-defined grid is created, the points of whiehuged in the evaluation of
all candidates in the population. For each pointirthe three conditions are tested and
a fixed penalty is applied for individuals which fail to sfgisny of them, rather than a
variable penalty based on the degree to which the computads/aary from the desired
values. The first two conditions are simple to evaluate;tiive involves a finite difference
approximation and thus requires additional work.

The partial derivatives of L with respect to x and y are appr@ated using finite differ-
ences. At each poirtr, y), L(x,y) is evaluated and the finite difference approximation is

formed
0L L(rx+ Axz,y) — L(z,y)

or Ax ’
oy Ay '

Normal usage is to tak&z to be the grid spacing, however, since we have the analytic
expression, we can gain accuracy in takikg small,~ 10~°

For each condition, a fixed penalty of 1.0 is added for faiboreatisfy the condition. For

the third condition where the dot product is supposed to lmepusitive, a smaller penalty
of 1/3 is assessed for cases in which the dot product is appabdely zero. This is because
solutions were found where most of the evalated points wiehessborder condition instead
of being strictly negative.

Although both generational and steady state models ar¢abiai the steady state loop
is normally used. The goal is to keep it as close to the gepeatmodel as possible,
in which G’ generations each result in the creation/fnew individuals (minus some
small retention from the previous generation...elitisi).&tFor the steady state loop one
individual in N x G "generations” is created. Tournament selection is useeéterdhine the
parent populationN individuals are chosen randomly from the population andoést of
these is selected as a parent. A random winner rate can béouséaiv a randomly chosen
individual to be used instead of the most fit individual frdme tournament with the given
probability. This is kept relatively low (.05 by default)

After selection, the genetic operators are applied. Eanjyiémentations mutated a single,
randomly chosen codon in a specified individual. To incrgaggulation diversity, the
currently used mutation operator iterates through eacbrcodan individual and replaces
it with a randomly selected value with probability M. In otheords, each codon has a 1
in 20 chance of being mutated if the crossover rate is .05jtaqabssible but unlikely that
every codon in a genotype could be mutated. This is relgtivighh incidence of mutation.

With mutation, recombination is also applied. Two paremésslected via the tournament
selection, crossover is performed yielding two childrersind a variable length genome,
a random cut point is selected such that it falls within thertr of the two parents. The
right halves of each parent are swapped, creating two nddrehi Both are evaluated and
the more fit of the two is kept; The more fit of those is mutated gen introduced into
the main population, replacing the least fit individual,asd it's a duplicate in terms of
genotype. In the case of duplicates a brand new individuakiated and introduced in it's
place. This is done in an attempt to ward off stagnation anidtaia diversity.

Once selection, mutation and recombination are completedhave a new generation.
This process repeats until the termination condition is mkts would be that a maximum
number of steps has occured or that a solution with a paati¢ihess has been found.

We use this term to connect to traditional genetic algorighbut it can be misleading. For a steady
state model the actual number population step¥ is G. It's a matter of semantics whether you consider
each individual to be created in a new generation. Conslidgrane could create an individual, put it in the
population, and then select that new individual as a pagerhe next generation.

5 Resaults

A number of systems were used to test the ability of the soéwafind appropriate Lya-
punov functions. For some systems and search regions tkistevery simple Lyapunov
functions of the formz? + y2. Functions of this form are among the first guesses a human
would make when trying to find a Lyapunov function by hand. Hege cases, although
the algorithm doesn’t specifically look for the "obviousnzhdates, it usually found these
functions or variations on them in short order. Other systprasented more of a challenge,
and it’s in these cases that GE shined.

To simplify the problem and to direct the search in a reaskerdibection a simple grammar
to generate polynomials was used; see Figure 3. Typicahpaiea values are listed in
Figure 4. Note on sampling radius and granularity: If the pesnt is (0,0) and the radius
is .3 with a granularity of .1, then the points sampled ar@, 3), (-.3, -.2), ... (-.3, .3),
(--2,-.3)...(.3, .3).

< > =< ><0p>< >
expr expr><op><expr wvars = x
| (<expr><op><expr>) |
| <var>"<const> L
<const> = 1
| <const> =*<expr> | 2
<op> =+ | 3
| - | 4

| *
Figure 3: Grammar for Lyapunov Functions

Population size (N): 200

Generation factor (G): 200

Crossover rate (C): .9

Mutation rate (M): .1

Generational model: steady state

Initial genotype length: 20 - 40 bytes
Tournament size (t): 5

Random tournament winner rate (w): .05
Sampling radius (r): .3

Sampling granularity (s): .1

Figure 4: Typical run parameters

The following provides some example systems and the hiditesss candidate Lyapunov
functions. Plots are provided following the sample runse Xhn the plot is the rest point.

The blue circles indicate grid points where the candidatpiyov function satisfies the
conditions. The red squares are where the dot product is Zdrese are often boundary
cases.

5.1 Examplesdynamical systems

1) For f(z,y) = z(2 —z — y),g9(z,y) = y(3 — 2* — y): Parameters: C=.9, M =.1, N
= 200, G = 200. The restpoint is (2,0). The best two candidgpunov functions are
Li=(1*(@4*x1xy*+at+4x2')/2% +y*)andLy = 2 x y*/23, see Figure 5.

2

L L b E b b : b b b
0 0.5 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

Figure 5:f(z,y) = z(2 — 2 — y), g(z,y) = y(3 — 2% — y)

2)Forf(z,y) =y,g9(z,y) = —(2* + y*) — y/3: Parameters: C=.9, M =.1,N=200, G =
200. The restpoint is (0,0). The best candidate Lyapunostionis . = (3> + (3 * 2° —
4 % y) x x3), see Figure 6.

2

Figure 6:f(z,y) =y, g(z,y) = —(2* +¢*) — y/3

)Forf(r,y) =2 —y—(x+y)3 g(x,y) = —x—3*y— (z+y)> Parameters: C=.9, M
=.1, N =200, G = 200. The restpoint is (0,0). The best canditlgapunov functions are
Ly = y*3xy?, Ly = 452% (((dxd# 252 — x4 25yt yt) —dxds 252 — 24) %45 25yt),
Ly=((4*23*2x 2! + 3% y?) x (dxy! +4x23) x2x 2! + 3% y?). see Figure 7.

4)Forf(z,y) = (z+y)*(2
.9

= —x)+H(z—y)x(y—1), 9(z,y) = (x+y)*(2—2)—(z—y)*(y—1):
Parameters: C=.9,M=.1, N

=200, G = 200. The restpoint is)(d;Be best candidate

9

Figure 7. f(z,y) =z —y — (z +y)*, g(z,y) = =2 = 3%y — (x + y)°

Lyapunov function is

L=(1x(1x2x @+ (@' =@ +y2) +y2)* (@ + (' — (¥ +y) +?))
w2+ (2! = (' + 7)) +) * (@' + (2! = (v + %) +97)))
w(at + (2! = (' + 7)) + 7))+ (@ + (@ = (') + 7)),

see Figure 8. Note that this function may be written in a moragact form, but we choose
to leave it in the same form as the algorithm produced it.

6 Conclusion and Future Directions

The injection of biological metaphors into the field of cortgruscience has proved very
valuable. A variation of genetic programming, Grammat€ablution, is one such addi-
tion to the evolutionary computing toolkit. GE applied te tletermination of Lyapunov
functions has yielded Lyapunov functions which would beydifficult for an investiga-
tor to find. By simple modification of the fitness function, etfapplications in symbolic
algebra can be treated.

The runtimes can be significant on these problems and use ydjradtalgorithm may be

10

Figure 8:f(z,y) = (z +y)* 2 —2) + (z —y) x (y — 1),9(x,y) = (v +y) * (2 —2) —
(z—y)*x(y—1)

warranted. The obvious step is to merge GE with differemallution, known as gram-
matical differential evolution or GDE [6], which can tackigore difficult search spaces.
Another approach is Local Search GE (LSGE) which adds a kezich genetic operator
such as hill-climbing (one approach is through the mutatiperator).

11

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, andrik D. Francone Genetic
Programming — An Introduction; On the Automatic EvolutidrGmmputer Programs
and its ApplicationsMorgan Kaufmann, San Francisco, CA, USA, January 1998.

Glenn Burgess. Finding approximate analytic solutitmdifferential equations using
genetic programming. Technical Report DSTO-TR-0838, Sillance Systems Divi-
sion, Defence Science and Technology Organisation, Aissti@alisbury, SA, 5108,
Austrlia, February 1999.

David B. Fogel, editor. Evolutionary Computation: the fossil recordEEE Press,
Piscataway, NJ, 1998.

David E. Goldberg and John H. Holland. Genetic algorishamd machine learning.
Machine Learning3(2/3):95-100, 1988.

John R. Koza.Genetic Programming: On the Programming of Computers byridea
of Natural SelectionMIT Press, Cambridge, MA, USA, 1992.

M. O’'Neill and A. Brabazon. Grammatical differential @ution. In Proceedings
of the ICAI 2006 Las Vegas, Nevada, 2006. International Conference orfic\adi
Intelligence (ICAI'06), CSEA Press.

Michael O’Neill and Conor Ryan. Under the hood of gramizatevolution. In Wolf-
gang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzasait Honavar, Mark
Jakiela, and Robert E. Smith, editoRypc. of the Genetic and Evolutionary Compu-
tation Conf. GECCO-99pages 1143-1148, San Francisco, CA, 1999. Morgan Kauf-
mann.

[8] Conor Ryan, J. J. Collins, and Michael O’Neill. Gramneati evolution: Evolving

programs for an arbitrary language. In Wolfgang Banzhaf¢c&ido Poli, Marc Schoe-
nauer, and Terence C. Fogarty, editétmyceedings of the First European Workshop on
Genetic Programmingvolume 1391 oLNCS pages 83-95, Paris, 14-15 April 1998.
Springer-Verlag.

12

