
Symbolic Computation using Grammatical
Evolution

Alan Christianson
Department of Mathematics and Computer Science

South Dakota School of Mines and Technology
Rapid City, SD 57701

Alan.Christianson@mines.sdsmt.edu

Jeff McGough Department of Mathematics and Computer Science
South Dakota School of Mines and Technology

Rapid City, SD 57701
Jeff.McGough@sdsmt.edu

March 20, 2009

Abstract

Evolutionary Algorithms have demonstrated results in a vast array of optimization prob-
lems and are regularly employed in engineering design. However, many mathematical
problems have shown traditional methods to be the more effective approach. In the case
of symbolic computation, it may be difficult or not feasible to extend numerical approachs
and thus leave the door open to other methods.

In this paper, we study the application of a grammar-based approach in Evolutionary Com-
puting known as Grammatical Evolution (GE) to a selected problem in control theory.
Grammatical evolution is a variation of genetic programming. GE does not operate di-
rectly on the expression but following a lead from nature indirectly through genome strings.
These evolved strings are used to select production rules ina BNF grammar to generate
algebraic expressions which are potential solutions to theproblem at hand. Traditional
approaches have been plagued by unrestrained expression growth, stagnation and lack of
convergence. These are addressed by the more biologically realistic BNF representation
and variations in the genetic operators.

1 Introduction

Control Theory is a well established field which concerns itself with the modeling and reg-
ulation of dynamical processes. The discipline brings robust mathematical tools to address
many questions in process control. The mathematics are by nomeans a well defined list of
equations to apply and for some problems, the tools are inadequate.

One of the basic questions in control theory is about the longterm dynamics of a system un-
der study. Many of the models of systems involve differential equations and some of these
are nonlinear problems. The nonlinearity prevents us from obtaining an explicit analytic
representation of the solution. Numerical methods are available and can provide solutions
to a very high degree of accuracy. However, numerical approaches do not give a general
qualitative description. So alternate methods are required to discuss what happens to the
solution dynamics in a generic sense. One tool to address theproblem is the Lyapunov
function. It is a function which can shed some light on the system dynamics.

Although a Lyapunov function has a very precise definition, the definition is in no way
constructive. The definition is more of a list of conditions which must be satisfied. To
make matters worse, the list of conditions does not lead to a unique object. Several dif-
ferent functions may satisfy the definition of a Lyapunov function and all provide different
information.

Our goal here is to illustrate the methods without getting mired down in excessive machin-
ery required to treat general systems. So, we restrict the number of dependent variables to
N = 2. The dynamical system we will focus on is

dx

dt
= f(x, y),

dy

dt
= g(x, y).

The functionsf andg are assumed to be continuously differentiable in a open setU ⊂ R
2.

This assures us of local existence and uniquess of solutions; so we actually have solutions
to discuss. The question then is given this system, can we predict the long term dynamics.
In other words, what happens tox(t) andy(t) ast → ∞. Assume for a moment that there
was a point inU , (a, b), for whichf(a, b) = g(a, b) = 0. This would be a point where all
motion stopped. It is known as a rest point. We refine our question and ask ifx(t) → a and
y(t) → b ast → ∞? This would tell us that the dynamics settles down to this rest point
and thus tells us the behaviour of our system.

A candidate Lyapunov function is a functionL(x, y) : R
2 → R which satisfies

• L(a, b) = 0,

• L(x, y) > 0 for (x, y) ∈ U \ {(a, b)}.

1

Simply stated this is a locally positive function away from the point(a, b). Lyapunov
proved that if we also know that

•
∂L

∂x
f(x, y) +

∂L

∂y
g(x, y) < 0 for all (x, y) ∈ U \ {(a, b)}

thenx(t) → a andy(t) → b ast → ∞. This is known as stability. The point (a,b) is stable
or it attracts the solution (sometimes called an attractor). The problem is simple. Find a
function that satisfies the three conditions and we are done.We will have proved stability.
Since Lyapunov gave conditions to satisfy, but not a constructive theorem, how can we find
these functions?

It turns out to be very difficult in practice. Especially whenin practice we are also interested
in gaining the largest setU possible. This casts our problem as a search and optimization
problem. For this we turn to evolutionary algorithms. They can act as both search and
optimization approaches. There are different flavors of evolutionary algorithms and we
choose a variation of one known as genetic programming.

Genetic Programming is a very successful and popular form ofevolutionary computation.
Koza and others (http://www.genetic-programming.org) have demonstrated the effective-
ness of genetic programming in a diverse set of optimizationproblems such as circuit lay-
out, antenna design, optical lens design, program generation and geometric optimization.
Our interest is that genetic programming has been successfully applied in symbolic alge-
bra problems. The Lyanpunov problem can be cast as an optimization problem involving
symbolic algebra.

Genetic programs, like evolutionary algorithms in general, use the metaphor of biological
evolution. First, it must represent candidate solutions insome encoded fashion. A collec-
tion of candidate solutions is normally generated; often done randomly. Continuing with
the metaphor, a subpopulation is selected and two principlegenetic operators are applied:
that of mutation and recombination. This process of selection, mutation and recombination
is repeated until a candidate solution satisfies the solution criterion. The specifics of selec-
tion, mutation and recombination, as well as additional operations on the population define
the type of evolutionary algorithm. Pseudo-code for the approach is given in Figure 1. For
more information on the breadth of the subject see [1, 3, 4].

A standard test problem in genetic programming is symbolic regression. GP is successful
on the classical numerical regression problems even if it isnot the fastest way to approach
curve fitting. Unlike traditional regression where the function form is fixed and coefficients
are desired, genetic programs may also be used to do symbolicregression which addresses
the actual function form in addition to the coefficients. Since symbolic regression aims at
producing a function which “fits” a data set, it opens up traditional areas of mathematics
such as finding analytic solutions to differential equations [2, 5].

2

Initialize the population
Rank the population
Repeat until termination is met

Select parents
Recombination and mutation applied to produce new members
Rank population

Figure 1: Evolutionary Algorithm

2 The Basic Genetic Program

A common approach in GP is to use an S-expression grammar for the storing of expres-
sions. A valid S-expression is an identifier (a letter), a constant (floating point value), or an
operation (a binary operation) along with its operands, which must be valid S-expressions
themselves. To encode a quadratic:

ax2 + bx + c → (+ c (∗ x (+ b (∗ a x)))).

S-expressions are easily stored and manipulated as trees. Each leaf node corresponds to
either an identifier or a constant, and the other nodes are binary operators. Evaluating an
expression is simply evaluating the tree (depth-first algorithm to calculate the return value
of the equation).

Given a specific quadratic, we can define a measure of how well this interpolates a data set
by looking at the difference between the data points and the quadratic. For example, assume
that we have the points (1,3), (4,7), (0,0), (-2, 5) and we have the polynomialp(x) = x2+1.
We compute

|p(1) − 3| + |p(4) − 7| + |p(0) − 0| + |p(−2) − 5| = | − 1| + |10| + |1| + |0| = 12.

The smaller this error, the better the fit of the polynomial tothe data set. In general this
error may be written as

e =

N−1∑

i=0

|p(xi) − yi|

This sum is used to define the fitness function.

A population of possible functions may be formed. Using the error function, we can assign
a fitness for each individual, with a smaller error corresponding to a higher fitness. This
can be used to select subgroups of the overall population. Since the individuals are repre-
sented as trees, the genetic operators must act on the trees without destroying the tree. The
mutation operator can be a simple random change of a node value or type. Recombination
may act by exchanging randomly selected subtrees between two parent trees. By using
the selection, mutation and recombination operations above we gain the basis for a genetic
program.

3

Selection of parents may be done in a variety of ways. An effective approach is to randomly
select parents from the population using a biased selectionscheme where the bias is based
on fitness. The process will normalize the fitness between 0 and 1. Next, generate a random
number and randomly pick an individual. If the normalized fitness is above the random
number, then keep the individual as a parent. After selection, the two genetic operators
(recombination and mutation) are applied. For mutation, one may randomly select and
change an element in the tree. For recombination, two parents are selected and in each a
subtree is selected. These subtrees are exchanged. This process creates the new generation
and we begin the cycle over.

This approach has been made popular by Koza, but sucessfullyimplemented by many au-
thors. However, it is not without problems The first is that wedon’t seem to get convergence
in the traditional sense due to stagnation. In this case, thepopulation does not appear to be
converging on a solution and seems to be stuck in the search. Another problem is that very
large expressions are rapidly generated due to the nature ofthe recombination operator.
These large expressions quickly come to dominate the population, resulting in extensive
memory use and longer CPU times. Based on the reported problems found with classical
GP, we decided to try a modification of the approach.

3 Grammatical Evolution

The central question remains: “can one evolve a Lyapunov Function”? Expression bloat
was a serious problem and would cause the computation to stagnate due to excessive re-
source requirements; this problem in GP is noted in [7, 8] andit is suggested that the less
destructive crossover operator in GE is responsible for thedecrease in bloat when com-
pared to similar implementations of GP. A different type of encoding scheme was explored
to combat this problem. The new scheme was one designed to more closely model the bi-
ological systems on which evolutionary approaches are based. The physical expressions of
traits, phenotypes, are not coded directly on the genome. The information on the genome,
the genotype, is translated from DNA to RNA and then to proteins. These proteins will di-
rect the construction of physical features. Very compact sequences can direct complicated
structures due to the encoding. A similar approach is neededin genetic programming.

Grammatical evolution is an evolutionary algorithm which separates genotype and phe-
notype, allowing simple definition of the candidate solution and the flexibility to alter or
replace the search algorithm. The genotype to phenotype translation, which is analogous
to biological gene expression, is performed by interpreting a context free grammar stored
in Backus Naur Form (BNF) and selecting production rules from that grammar based on
the codons which make up the genotype. The use of a context free grammar to direct the
creation of candidate solutions allows a greater level of control over their length and form
than does traditional GP. The particular flavor of GE in use onthis problem is driven by a
steady state genetic algorithm using a variable length genome.

4

The steady state form of GA involves introducing only a single new individual in a given
generation, unlike traditional generational models in which a significant portion of the pop-
ulation is replaced in a given generation. Steady state GAs have been found to outperform
generational GAs in a number of applications, both with and without GE. This application
also utilized a feature of GE known as wrapping, meaning that, upon reaching the end of the
genotype, further production rules may be selected by starting over again at the first codon.
This wrapping is implemented with a limit to avoid unboundedexpansion of nonterminals
in the grammar. This limits the amount of time spent in the gene expression as well as
the maximum length of the resulting phenotype. The fitness determination is performed by
direct evaluation of the expressions (as opposed to generating actual programs, compiling
them, etc. as is often done with pure GP) using a free parser called fparser.

Although the decision to use GE was driven by the desire to control the candidate solutions
in terms of both length and form, certain problems also require complicated crossover
code to prevent the formation of nonsensical trees. The grammar-based construction of
GE allows a simpler and finer control over candidate length and form. Domain specific
knowledge can easily be included in the grammar to intelligently limit the solution search
space.

A BNF grammar is one that is built from terminals, objects that are represented in the
language such as constants, variables, and operators, and from non-terminals, objects that
can be expanded into terminals or other non-terminals. It may be represented by the 4-tuple
{N, T, P, S}, where for this application:N = {expr, op, preop, var}, is the set of non-
terminals;T = {+,−, ∗, /, (,), X, 1.0, 2.0, . . . , 9.0} is the set of terminals; andS ∈ N , a
start symbol; andP is the set of production rules, see Figure 2. Using the BNF grammar,
an equation is formed from an integer string by applying the production rules which are
selected based on the integer values.

(1) <expr> ::= <expr> <op> <expr> (A) (3) <pre-op>::= sqrt (A)
| (<expr> <op> <expr>) (B)
| <pre-op> (<expr>) (C) (4) <var> ::= X (A)
| <var> (D) | 1.0 (B)

.... ...
(2) <op> ::= + (A) | 9.0 (J)

| - (B)
| * (C)
| / (D)

Figure 2: Production rules

The rest of grammatical evolution is consistent with other forms of evolutionary algorithms.
Algebraic expressions are represented via the string whichthe BNF grammar uses to create
a individual as described above. A population is formed, often randomly to start, ofn indi-
viduals. The normal process of selecting parents, crossover and mutation are applied to the
population. Selection normally is some type of stochastic approach where the probability
of selection is based on the fitness. This is used to produce a new generation. This process

5

is repeated until a candidate solution is found or the maximum generation count occurs.

Grammatical Evolution first distinguishes itself by the performance gains. GE on aver-
age uses significantly less memory than a comparable GP implementation and has a cor-
responding decrease in runtime compared to GP. These differences are due both to the
compact binary representation of the genotype and the significant decrease in bloat of the
resulting phenotype.

4 Algorithm details

The solution space is searched using a fixed size population approach. An initial popula-
tion is generated by creatingN vectors (individuals) of randomly-generated integers which
serve as the codons of the individuals. They are replaced oneat a time as individuals with
higher fitness are created via crossover or other means, including the new initialization of
individuals using the same technique as that used in the creation of the initial population.

As previously mentioned, evaluation of a candidate Lyapunov functionL(x, y) depends on
the satisfaction of three conditions

• L(a, b) = 0,

• L(x, y) > 0 for (x, y) ∈ U \ {(a, b)}.

•
∂L

∂x
f(x, y) +

∂L

∂y
g(x, y) < 0 for all (x, y) ∈ U \ {(a, b)}

For a given systemF (x, y), G(x, y) a region surrounding the rest point(a, b) is selected
as the region of interest from which the points comprising the setU are selected. For this
problem a user-defined grid is created, the points of which are used in the evaluation of
all candidates in the population. For each point inU the three conditions are tested and
a fixed penalty is applied for individuals which fail to satisfy any of them, rather than a
variable penalty based on the degree to which the computed values vary from the desired
values. The first two conditions are simple to evaluate; the third involves a finite difference
approximation and thus requires additional work.

The partial derivatives of L with respect to x and y are approximated using finite differ-
ences. At each point(x, y), L(x, y) is evaluated and the finite difference approximation is
formed

∂L

∂x
=

L(x + ∆x, y) − L(x, y)

∆x
,

∂L

∂y
=

L(x, y + ∆y) − L(x, y)

∆y
.

6

Normal usage is to take∆x to be the grid spacing, however, since we have the analytic
expression, we can gain accuracy in taking∆x small,≈ 10−6

For each condition, a fixed penalty of 1.0 is added for failureto satisfy the condition. For
the third condition where the dot product is supposed to be non-positive, a smaller penalty
of 1/3 is assessed for cases in which the dot product is approximately zero. This is because
solutions were found where most of the evalated points were at this border condition instead
of being strictly negative.

Although both generational and steady state models are available, the steady state loop
is normally used. The goal is to keep it as close to the generational model as possible,
in which G generations each result in the creation ofN new individuals (minus some
small retention from the previous generation...elitism etc).1 For the steady state loop one
individual inN ∗G ”generations” is created. Tournament selection is used to determine the
parent population.N individuals are chosen randomly from the population and thebest of
these is selected as a parent. A random winner rate can be usedto allow a randomly chosen
individual to be used instead of the most fit individual from the tournament with the given
probability. This is kept relatively low (.05 by default)

After selection, the genetic operators are applied. Early implementations mutated a single,
randomly chosen codon in a specified individual. To increasepopulation diversity, the
currently used mutation operator iterates through each codon in an individual and replaces
it with a randomly selected value with probability M. In other words, each codon has a 1
in 20 chance of being mutated if the crossover rate is .05, andit’s possible but unlikely that
every codon in a genotype could be mutated. This is relatively high incidence of mutation.

With mutation, recombination is also applied. Two parents are selected via the tournament
selection, crossover is performed yielding two children. Using a variable length genome,
a random cut point is selected such that it falls within the shorter of the two parents. The
right halves of each parent are swapped, creating two new children. Both are evaluated and
the more fit of the two is kept; The more fit of those is mutated and then introduced into
the main population, replacing the least fit individual, unless it’s a duplicate in terms of
genotype. In the case of duplicates a brand new individual iscreated and introduced in it’s
place. This is done in an attempt to ward off stagnation and maintain diversity.

Once selection, mutation and recombination are completed,we have a new generation.
This process repeats until the termination condition is met. This would be that a maximum
number of steps has occured or that a solution with a particular fitness has been found.

1We use this term to connect to traditional genetic algorithms, but it can be misleading. For a steady
state model the actual number population steps isN ∗ G. It’s a matter of semantics whether you consider
each individual to be created in a new generation. Consider that one could create an individual, put it in the
population, and then select that new individual as a parent for the next generation.

7

5 Results

A number of systems were used to test the ability of the software to find appropriate Lya-
punov functions. For some systems and search regions there exist very simple Lyapunov
functions of the formx2 + y2. Functions of this form are among the first guesses a human
would make when trying to find a Lyapunov function by hand. In these cases, although
the algorithm doesn’t specifically look for the ”obvious” candidates, it usually found these
functions or variations on them in short order. Other systems presented more of a challenge,
and it’s in these cases that GE shined.

To simplify the problem and to direct the search in a reasonable direction a simple grammar
to generate polynomials was used; see Figure 3. Typical parameter values are listed in
Figure 4. Note on sampling radius and granularity: If the rest point is (0,0) and the radius
is .3 with a granularity of .1, then the points sampled are (-.3, -.3), (-.3, -.2), ... (-.3, .3),
(-.2, -.3)...(.3, .3).

<expr> ::= <expr><op><expr>
| (<expr><op><expr>)
| <var>ˆ<const>
| <const> * <expr>

<op> ::= +
| -
| *

<var> ::= x
| y

<const> ::= 1
| 2
| 3
| 4

Figure 3: Grammar for Lyapunov Functions

Population size (N): 200

Generation factor (G): 200

Crossover rate (C): .9

Mutation rate (M): .1

Generational model: steady state

Initial genotype length: 20 - 40 bytes

Tournament size (t): 5

Random tournament winner rate (w): .05

Sampling radius (r): .3

Sampling granularity (s): .1

Figure 4: Typical run parameters

The following provides some example systems and the highestfitness candidate Lyapunov
functions. Plots are provided following the sample runs. The X in the plot is the rest point.
The blue circles indicate grid points where the candidate Lyapunov function satisfies the
conditions. The red squares are where the dot product is zero. These are often boundary
cases.

8

5.1 Examples dynamical systems

1) Forf(x, y) = x(2 − x − y), g(x, y) = y(3 − x2 − y): Parameters: C = .9, M = .1, N
= 200, G = 200. The restpoint is (2,0). The best two candidate Lyapunov functions are
L1 = (1 ∗ (4 ∗ 1 ∗ y2 + x4 + 4 ∗ x1)/x3 + y4) andL2 = 2 ∗ y2/x3, see Figure 5.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 5:f(x, y) = x(2 − x − y), g(x, y) = y(3 − x2 − y)

2) Forf(x, y) = y, g(x, y) = −(x2 + y2)− y/3: Parameters: C = .9, M = .1, N = 200, G =
200. The restpoint is (0,0). The best candidate Lyapunov function isL = (y2 + (3 ∗ x3 −
4 ∗ y1) ∗ x3), see Figure 6.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 6:f(x, y) = y, g(x, y) = −(x2 + y2) − y/3

3) Forf(x, y) = x− y− (x + y)3, g(x, y) = −x− 3 ∗ y− (x + y)3: Parameters: C = .9, M
= .1, N = 200, G = 200. The restpoint is (0,0). The best candidate Lyapunov functions are
L1 = y4∗3∗y2 , L2 = 4∗2∗(((4∗4∗2∗x4−x4∗4∗2∗y4+y4)−4∗4∗2∗x4−x4)∗4∗2∗y4+y4),
L3 = ((4 ∗ x3 ∗ 2 ∗ x1 + 3 ∗ y2) ∗ (4 ∗ y1 + 4 ∗ x3) ∗ 2 ∗ x1 + 3 ∗ y2). see Figure 7.

4) Forf(x, y) = (x+y)∗(2−x)+(x−y)∗(y−1), g(x, y) = (x+y)∗(2−x)−(x−y)∗(y−1):
Parameters: C = .9, M = .1, N = 200, G = 200. The restpoint is (0,0). The best candidate

9

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 7:f(x, y) = x − y − (x + y)3, g(x, y) = −x − 3 ∗ y − (x + y)3

Lyapunov function is

L = ((1 ∗ (1 ∗ (2 ∗ (x4 + (x1 − (y1 + y2) + y2)) ∗ (x4 + (x1 − (y1 + y2) + y2)))
∗(x4 + (x1 − (y1 + y2) + y2)) ∗ (x4 + (x1 − (y1 + y2) + y2)))
∗(x4 + (x1 − (y1 + y2) + y2))) ∗ (x4 + (x1 − (y1 + y2) + y2))),

see Figure 8. Note that this function may be written in a more compact form, but we choose
to leave it in the same form as the algorithm produced it.

6 Conclusion and Future Directions

The injection of biological metaphors into the field of computer science has proved very
valuable. A variation of genetic programming, GrammaticalEvolution, is one such addi-
tion to the evolutionary computing toolkit. GE applied to the determination of Lyapunov
functions has yielded Lyapunov functions which would be very difficult for an investiga-
tor to find. By simple modification of the fitness function, other applications in symbolic
algebra can be treated.

The runtimes can be significant on these problems and use of a hybrid algorithm may be

10

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 8:f(x, y) = (x + y) ∗ (2 − x) + (x − y) ∗ (y − 1), g(x, y) = (x + y) ∗ (2 − x) −
(x − y) ∗ (y − 1)

warranted. The obvious step is to merge GE with differentialevolution, known as gram-
matical differential evolution or GDE [6], which can tacklemore difficult search spaces.
Another approach is Local Search GE (LSGE) which adds a localsearch genetic operator
such as hill-climbing (one approach is through the mutationoperator).

11

References

[1] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone.Genetic
Programming – An Introduction; On the Automatic Evolution of Computer Programs
and its Applications. Morgan Kaufmann, San Francisco, CA, USA, January 1998.

[2] Glenn Burgess. Finding approximate analytic solutionsto differential equations using
genetic programming. Technical Report DSTO-TR-0838, Surveillance Systems Divi-
sion, Defence Science and Technology Organisation, Australia, Salisbury, SA, 5108,
Austrlia, February 1999.

[3] David B. Fogel, editor. Evolutionary Computation: the fossil record. IEEE Press,
Piscataway, NJ, 1998.

[4] David E. Goldberg and John H. Holland. Genetic algorithms and machine learning.
Machine Learning, 3(2/3):95–100, 1988.

[5] John R. Koza.Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[6] M. O’Neill and A. Brabazon. Grammatical differential evolution. In Proceedings
of the ICAI 2006, Las Vegas, Nevada, 2006. International Conference on Artificial
Intelligence (ICAI’06), CSEA Press.

[7] Michael O’Neill and Conor Ryan. Under the hood of grammatical evolution. In Wolf-
gang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark
Jakiela, and Robert E. Smith, editors,Proc. of the Genetic and Evolutionary Compu-
tation Conf. GECCO-99, pages 1143–1148, San Francisco, CA, 1999. Morgan Kauf-
mann.

[8] Conor Ryan, J. J. Collins, and Michael O’Neill. Grammatical evolution: Evolving
programs for an arbitrary language. In Wolfgang Banzhaf, Riccardo Poli, Marc Schoe-
nauer, and Terence C. Fogarty, editors,Proceedings of the First European Workshop on
Genetic Programming, volume 1391 ofLNCS, pages 83–95, Paris, 14-15 April 1998.
Springer-Verlag.

12

