Exploring Dynamic Compilation Facility in Java

Dingwei He and Kasi Periyasamy
Computer Science Department
University of Wisconsin-La Crosse

La Crosse, WI 54601
kasi@cs.uwlax.edu

Abstract

Traditional programming practice requires re-compilation of the entire code whenever it
is modified. Such re-compilation may take more time if the size of the resulting code af-
ter modification is too big. This will be problematic for applications that are frequently
changed. Component Based Software Engineering (CBSE) provides one option to over-
come this problem by implementing several components separately and then coherently
composing them together to form an application. In this case if properly designed, modi-
fication to one component may not significantly affect other components in the system but
re-compilation of the modified component is still necessary. The latest Java technology
provides another option in which a new piece of code can be compiled and then dynami-
cally loaded, along with the existing code, without re-compiling the latter.

This paper describes the dynamic compilation facility (also referred to as “on-the-fly” com-
pilation in this paper) in Java and demonstrates its application using a simple case study on
a banking environment. The case study illustrates how it is possible to add a new service to
the banking environment by adding the code for the new service, compiling and loading it
along with existing services provided by the bank. For example, in addition to the normal
transactions such as ‘deposit’, ‘withdraw’ and ‘check balance’, a manager will be able to
add a new service called ‘special withdraw’ that will be used by privileged customers. A
critical comparison of this approach to CBSE with regard to the case study is also addressed
in the paper.

The major advantage of this approach is not only that it eliminates the need for re-compilation
of the whole application but it greatly supports incremental development of large applica-
tions. The authors are using this technique in developing a GUI-based front-end for an
object-oriented database. In this case, a new object can be created using the GUI and
the code for this object is generated, compiled and added to the application. The paper
briefly discusses the comparison of “on-the-fly” compilation with other dynamic compila-
tion techniques. This comparison distinguishes the use of dynamic compilation facility at
the application level and continuing work in this direction.

1 Introduction

One of the major tasks of software maintenance is enhancement by which new features
are added to existing ones. Traditionally, when a new feature is added, the entire code
must be recompiled and the application is deployed again. Typically such enhancements
are done in newer releases of the software and are infrequent. However, there are some
types of applications where the frequency of enhancements or modifications is so high that
re-compilation and re-deployment consume so much time and significant affect the usage
of the product. Examples of such software systems include bank transactions where poli-
cies are changed quite frequently and/or often new policies are also introduced. Another
example is the set of applications loaded on a mobile phone. With increasing demand
for mobile applications and the fact that changes occur so frequently, re-compilation and
re-deployment are real bottlenecks.

Component Based Software Engineering (CBSE) [3, 5] provides one possible solution for
re-compilation problem. In this case, the software system includes several components
that are somewhat self-contained packages. These components are cohesively composed
together to form an application. When a new feature is expected to be added to an ex-
isting system, it is designed as another component and integrated with the set of existing
features. When using this approach, the designer has an obligation to carefully identify
the components and to ensure that the dependencies among the components are less. In
addition, the approach still requires re-compilation of the new component and the set of
existing components with which the new component interacts, if not re-compilation of the
entire code.

In this paper, the authors look at another possible approach called “on-the-fly” compilation
provided by the current Java technology. This approach supports dynamic compilation and
dynamic loading of new code without the need for re-compilation of existing code. By
dynamic, it means that a programmer can write a piece of new code which can be read,
compiled and loaded by the same application while the application itself is running. Java
supports this facility in version 1.6 onwards. The programmer can write the code in such
a way that an application accepts a Java program through an external file, invoke a Java
compiler and loader, and add the byte code that is compiled will be added to the same ap-
plication. Java’s previous work in this direction resulted in Just-In-Time (JIT) compilation
facility [1]. However, JIT technique was mostly used by compiler writers and was not visi-
ble for application programmers. Unnikrishnan and others [6] discussed more on reducing
compile time overhead of Java programs but mostly focused on system programming. Ma-
suhara and others [2] have explored the dynamic compilation facility much similar to the
“on-the-fly’”” compilation. They focus on developing and using a reflective language. The
major problem in their approach is that there is no architecture to realize or to implement
the approach [2]. A follow-up work by Radhakrishnan and others [4] describes how Java
run-time charactersitics can be exploited in terms of dynamic loading of byte cods much
similar to the JIT technique. The authors in this paper claim that the “on-the-fly”” com-
pilation technique is different from JIT mainly because the former is application-oriented
whereas JIT is system-oriented. Consequently, JIT technique is more useful for Java pro-
grammers who wish to focus on run-time performance issues.

The “on-the-fly”” compilation approach is illustrated with a case study on a bank transac-

tions system in which a dynamic service can be added to the set of existing services pro-
vided by the bank. The major advantage of this approach is that it not only eliminates the
need for re-compilation but it also supports incremental software development approach.
For example, one can use the CBSE design technique to identify the components at design
time but add the code for each component one at a time.The authors are using this tech-
nique in developing a GUI-based front-end for an object-oriented database. In this case, a
new object can be created using the GUI and the code for this object is generated, compiled
and added to the application.

2 Methodology

Consider a data-oriented application such as a banking system that provides a set of trans-
action services to its customers. If a new transaction is required to be added, first additional
code must be written for this transaction and is saved in a separate file. This file is then
compiled by the banking system and loaded with the banking system itself. In order to do
this, the programming language should support dynamic compilation of this new code and
running the code. Java version 1.6.0 provides all these services. Following is a simple Java
code by which one can call the system Java compiler from within a Java program.

public void invokeCompiler (String filename) {
JavaCompiler compiler =
ToolProvider.getSystemJavaCompiler () ;
if (compiler != null) {
int result =
compiler.run (null, null, null, filename);
if (result == 0)
System.out.println (" Compilation successful");
else
System.out.println (" Compilation failed");
}
else System.out.println
(" Unable to get system java compiler");

The “filename” in the above example refers to the name of the file containing the newly
written source code. The above code uses the ‘SystemJavaCompiler’ which is usually avail-
able somewhere in the Java directory. To make this program work, one needs to include
the path of the Java Compiler (namely ‘javac’) in the CLASSPATH environment variable
so that the run-time system, when executing this code, will be able to find the compiler.
Similar to dynamic compilation, a pre-compiled Java program can also be run dynamically
from within another Java program. This is done by invoking the Java run-time system, very
similar to invoking the Java compiler in the previous example. The following piece of code
shows how a compiled program can be run by loading the program first and then using it.

Class SpecialTransactionClass = null;
try {

URLClassLoader cl =
URLClassLoader.newInstance
(new URL[]{new URL("file:///c:/dir")});
SpecialTransactionClass =
cl.loadClass ("SpecialTransaction ");
}
catch (Exception ex)
{ System.out.println (ex);}

In the above code, “dir” refers to the folder in which the user puts the dynamically compiled
classes, and “SpecialTransaction.class” is assumed to be the newly compiled code which
is put in “c:/dir/transactions/”. This new class can be used in two ways: (1) using the
reflection API in Java, and (2) using an organized class path. The following code shows
the usage in both ways. Assume that the “SpecialTransaction” class has only one method
namely,“public void execute(Object arg)”.

Using the reflection API

try {
Method executeMethod =
SpecialTransactionClass.getMethod ("execute", Object.class);
executeMethod. invoke
(SpecialTransactionClass.newInstance (), "StringParameter");
}
catch (Exception ex)
{ System.out.println (ex);}

The above code indicates that the method “execute” is selected using the reflection API call
“getMethod” and then is invoked using the parameters supplied in “StringParameter”.

Using organized class path

Assume that we have a program called “DynamicATM” and all extended functionalities
are expected to be stored in a directory called “d:/DynamicATMExtensions”. Assuming
that the file “SpecialTransaction.class” is placed in the directory “DynamicATMExten-
sions/transactions/”, the following command (on Windows Operating System) is issued
to start the application:

java —-classpath $CLASSPATHS%;d:\DynamicATMExtendsions —-jar DynamicATM. jar
Now, the dynamically created class can be used as shown below:

transactions.SpecialTransaction st =
new transactions.SpecialTransaction();
st.execute ("StringParameter") ;

3 Case Study

The methodology described in the previous section is illustrated through a bank transaction
system. The bank normally offers three types of transactions for a customer - deposit,

withdraw and check balance. Assume that a customer cannot withdraw more than the
available balance in an account. Figurel shows the initial screen shot of the transaction
system. Suppose that the bank manager would like to add a new service called Special
transaction which lets a customer withdraw more than the available balance in an account
thus leading to a negative balance in the account. To do this, the manager first clicks
the menu item ‘Transaction’ on the screen (shown in Figure 1). This will open up the
transactions menu which currently has only one item named ‘Create Transaction’. When
the user selects this item, it leads to a different screen (shown in Figure 2). The manager

-~

|| DynamicATM

=aacN X

Transaction

Create Transaction

Sereen
1 2 3
4 5]
T g g Aeeount ID: 0302736482
e ! Mnownt: 80.3 §
Previous Enter Mext

Iranszaction

[Check Balance

[¥: thdran |

[Deposit]

Figure 1: Main Screen of the Bank Transactions System

then adds the code for the new transaction as shown in Figure 2 and clicks the ‘create’
menu item appearing on the top left corner. The tool internally compiles and loads the new
code. The new transaction is added to the existing three transactions as shown in Figure 3.
It can be used as any other transaction thus enabling dynamic addition of services.

-

|£| Create a Transaction [| 0[E] Li:hr

Create

Transaction Code

paclkage DymamicAIM. logie. transactions;
import DynamicATIM. gui. ATMScreen;

public eclass Speciallransaction extends Transaction{

public SpecialTlransaction () {
setWame ("Special Transaction™);
add (new SpeciallranzationScreenl ());
add (new SpecialTransationScreen? (J);
)

Bowerride
public woid transactionfctiond

m

Jf SpecialTlransaction logic here

f£f Get the runtime AIM Screen Panel which iz showing in
SY the main screen.

S This indicates that the dynamically created code

JSf can interact with the runtime program.

ATMScreen screen = DwmamicATIM. getScreen():

H
priwate static class SpeciallranzactionScreenl extends JPanel{

}

}

Figure 2: Code for creating a new transaction

4 The Front-end of a Database

The authors are developing an object-oriented database which can be used by a Java appli-
cation. Users of this database can store and retrieve Java objects into/from this database.
The major advantage of this database is to hide the tabular implementation of a relational
database and provide a seamless integration of the object-oriented technology from the
graphical user interface to the database through the application layer. Like most of the
commercial databases, this object-oriented database also comes with a GUI to manage the
database directly without accessing it through a program. While most end users using
commercial, relational databased such as Access and SQL server know how to create and
maintain tables, it is not possible to expect end users to know objects (as used in OO ap-
proach). The GUI design for this OO database thus posed a challenge for the authors. It is
in this context, the authors decided to provide a simple GUI for the end users to input the
structure of the object which they want to store. The back-end code will then generate the
class and its associated methods for this object, dynamically compile and load it with the
application so that both end users as well as any application program that uses the database
can access this newly created object. Figure 4 shows the type editor for this database. Using

5

-

| 4| DynamicATM = | Bl i

Transaction
Control Panel Screen
1 2 3
Iransaction Type: Special Tramsaction

4 5]
T 8 9

Cancel]

Previous Enter Next

Iransaction

[Check Balance]

[Wi thdran |

[Deposit]

[Special Iransaction]

Figure 3: Updated Screen for the Bank Transaction System

the type editor, a user of the database can first create an object. Notice that the user does
not need to know anything about OO programming. Instead, the user is expected to define
the composite structure of an entity. Upon completion of this structure, the OO database
will create a class for this structure with ger and sef methods. This class will be compiled
and loaded with the application and at the same time an instance of this class will be stored
in the database. For OO programmers who wish to access this newly created object, the
GUI provides another editor called service editor which can be used to add a new piece of
code on the fly. Figure 5 shows the service editor in which a Java programmer adds new
code to access the newly created object. This way, the OO database can be used by both
programmers as well as by end-users, the latter including non-programmers.

5 Limitations

As seen from the current implementation of the case study, the end user must know Java
programming in order to add new code to the system. This does not seem to be a major
problem because new code is necessary to enhance the existing features, no matter whether

OODatabase System Workbench

File Database Session
Database DataEditor: org.uwl.weii.commons.Account r QueryEditor: New Query rScriptEditor: New Script
scripts |’ Session TypeEditor: org.uwl.weii.commons.Account r ServiceEditor: AccountValidationServiceBean
Types Services | -Components Declaration
1/ MName Type Default Value Comment
¢ [CJ org.uwl weii commans accountlD INTECER.
o= 9 Account i |password java.lang.String
& [org.uwl.weii.researchs || [firstname java.lang.String
i middlenamea java.lang.3tring
lastname java.lang.3tring N
photo 00Database Image L
courses 00Database.5et<Course>
Component
Properties Value
Name accountiD
Type java.lang.Integer
Default Value
Comment
Auto Increment true
Unique true

Figure 4: Type Editor for the OO Database

it is written by an end user or by the developer. However, when an end user has the flexi-
bility of adding a new code by himself/herself, security becomes a major concern. In case
of the banking example, strict access policies must be implemented in order to protect the
code.

Second, the new code can only be used independently on its own; no existing service (such
as deposit or check balance) can use this service because existing code does not have any
knowledge of the new code. This problem is analogous to the relationship between a super
class and a subclass in an inheritance hierarchy. The super class does not need to know its
subclasses whereas the subclass inherits and uses the features of the super class.

Third, the impact of adding new service is not fully explored. For example, traditional
software engineering process conducts regression testing whenever new code is added or
existing code is modified. However, there is no such testing involved in this process. There-
fore, the impact of the new code needs to be further explored.

File

OODatabase System Workbench

Database Session

Database DataEditor: org.uwlweii.commons.Account r QueryEditor: New Query rScriptEditor: New Script

Scripts | Session

TypeEditor: org.uwlweii.commons.Account r ServiceEditor: AccountValidationServiceBean

Types Services

ave

=/

¢ [CJ org.uwl.weii. commons
o~ Account |
o= 3 org.uwl.weii.researchs i h

|| public class AccountValidationServiceBean{

Account tovalidate = null;

public AccountValidationServiceBean(Account account){
toValidate = account;

1

public void validate(){
/{ validation code goes here

1

Figure 5: Service Editor for the OO Database

6 Conclusion

This paper describes how the dynamic compilation facility in Java can be utilized to add
code to an existing application without re-compilation. This technique, referred to as “on-
the-fly” compilation in this paper, is useful for applications that encounter changes in im-
plementation. The paper illustrates the technique with a case study on a simple banking
system and also explains how the authors have used this approach in the implementation
of an OO database. The impact of this new technique on testing has not yet been identified
and the authors continue to work in this direction.

References

[1] Aycock, J., “A Brief History of Just-In-Time”, ACM Computing Surveys,
35:2, June 2003, pp. 97-113.

[2] Masuhara, H. et al., “Dynamic Compilation of a Reflective Language Us-
ing Run-Time Specialization”, International Conference on Principles of
Software Evolution, Nov 2000, pp. 128-137.

[3] Heineman, G.T. and Council, W.T., Component-Based Software Engineer-
ing: Putting the Pieces Together, Addison-Wesley Professional, Reading
2001.

[4] Radhakrishnan, R. ef al., “Java Run-Time Systems: Characterization and
Architectural Implications”, IEEE Transactions on Computers, 50:2, Feb
2001, pp. 131-146.

[5] Szyperski, C., Component Sofwtare: Beyond Object-Oriented Program-
ming, Second Edition, Addison-Wesley Professional, Boston 2002.

[6] Unnikrishnan, P. et al., “Reducing Dynamic Compilation Overhead by
Overlapping Compilation and Execution”, Asia and South Pacific Confer-
ence on Design Automation, Jan 2006, pp. 929-934.

