

A Natural Language Query Processor for a Database

Milo Velimirović

Kasi Periyasamy

Computer Science Department

University of Wisconsin – La Crosse

La Crosse WI 54601

milov@cs.uwlax.edu

Abstract

This paper describes a recognizer based on a subset of English that is simple but

limited to the chosen problem domain. The lexical inventory and English grammar were

built up incrementally using LEX and YACC compiler tools. The recognizer extracts the

necessary information to fill-in clauses of an SQL template that when completed and run

as a query against a database system answers the question originally stated in English.

The benefit of a natural language query processor is that no knowledge of

database structure is required to use it. A user needs only to know what is in the database,

but not how it is organized. In the current work variations of ‗who‘ questions are

recognized in the context of a small movie database. The recognizer could be easily

extended by the addition of lexical and grammar rules and SQL templates to address

different questions, such as ‗how many‘.

mailto:milov@cs.uwlax.edu

1. Introduction

Since their inception digital computing devices have been used in natural

language processing. Among the first electronic digital computers was the Colossus

(Flowers 1983), which was used by the British to decipher encrypted enemy

communications during World War II. The Colossus had no understanding of the

messages it was processing. It merely performed Boolean operations on data from paper

tapes. In the 1950s a project at Harvard sought to use computers to perform automatic

translation of text from Russian to English (Oettinger 1960). Unfortunately, the automatic

translation of texts never became a successful endeavor.

Numerous languages have been developed to facilitate human-computer

interactions to allow humans to more effectively and efficiently direct computers to solve

problems that they were interested in. The research in language theory led to the creation

of tools that permit the rapid construction of parsers, software that can recognize

correctly formed statements of a specified computer language. Perhaps the most well-

known of these tools is Yacc: Yet Another Compiler-Compiler, (Johnson 1978), which is

available on most computers running UNIX.

While the tools for computer languages were being developed, the storage

capacity of computers was being increased as well. With the increase in data storage

capacity, new techniques for managing data entry, manipulation and retrieval were

invented. The most successful of these techniques are database management systems that

implement E. F. Codd‘s relational database model (1970) in which data are stored as

unique rows organized into tables. Most relational database systems provide access

through Structured Query Language or SQL. The advantage of the relational model and

SQL is the great increase in productivity it affords. Unfortunately, SQL is a computer

programming language—its syntax and intricacies must be learned if one wished to use it

to make queries of a database. Despite all the advances in technology, there remains a

gap between the well understood problems associated with designing a synthetic,

computer programming language and writing software that will parse and understand

more than a small subset of a natural language. The difference can be illustrated by a

comparison of SQL to English:

SQL statement:

select f.director from films f where f.title = "Edward

Scissorhands";

English statement:

―Who directed the movie, ‗Edward Scissorhands‘?‖

In either method of asking the question, the desired result or answer is 'Tim Burton'.

This paper describes a project that explored the use of parser generation tools

that facilitate the mapping and translation of natural language questions in a subset of

English language into database queries using Structured Query Language. The mapping

between simple questions such as, ―Who directed… ?‖ or ―When was… ?‖ can be made

in a straightforward manner. This would require a style of inquiry where all of the

questions asked are self-contained. Most conversations contain references to things that

have been mentioned at some other time or to persons by using pronouns. These serve as

a shorthand, or placeholder for something or someone previously mentioned, but add a

component of natural language to a query. For example, it would be desirable to be able

to follow the above example query with, ―When was it released?‖ and have ―it‖ or the

phrase, ―the movie,‖ correctly resolve to the movie title.

. In the current project, the types of English questions will begin with simple

―newspaper‖ questions of who, what, where, when and how (many) —why will be left as

an exercise for the reader. Since a conversational style is a feature of natural languages,

questions that employ compound conditions, e.g. ―What movies were written, produced

and directed by Sam Fuller?‖ will be investigated as well as those that employ pronouns.

2. Literature Review

The desire to interact in a straightforward, natural way with computers to answer

questions about data is as old as the computer technology itself. The earliest computer

programming languages were an attempt to give computer users a notation for stating the

methods to be used to solve their problems that was more familiar than the codes for the

machine instructions performed by the computers. These languages still required a

significant investment in time and training for one to become proficient in their use. The

vocabulary of these languages was limited and the syntax of statements was inflexible; in

large part, these restrictions existed to simplify the process of translating programming

languages into computer machine instructions.

The first programming languages were translated into machine instructions in an

ad hoc fashion, without a formal theory to guide the process. Computer scientists

developed the theories, techniques and tools needed to completely describe and specify

programming languages. These included automata, formal grammars, parsers and

analyzers. These allowed construction of scanner software to recognize the numbers,

words and punctuation; parsers based on grammars permitted software to analyze the

statements of a programming language so that they could be further processed and

translated into the machine instructions that that could themselves be run on computers.

Natural languages, such as English, have a large vocabulary, and do not have a syntax

that can be reduced to a number of grammar rules in a manner that directly parallels that

of programming languages. This makes the task of translating English for purposes of

controlling or querying computers much more difficult than using programming

languages. One way to simplify the problem is to restrict the types and formats of the

language that can be used in communications with a computer. Another way to simplify

the problem is often enforced by the domain of inquiry, shrinking the vocabulary to cover

only the facts or data contained in a database. It‘s almost always easier to solve a problem

that is narrowly defined, than to attempt to construct a universal problem solver.

The research reported in this paper begins with investigations that use simple

English constructions to engage in conversations with software about very restricted

domains of knowledge. Over time the types of queries increase in complexity, but the

domains remain quite limited. Once the relational database model took hold as the

predominant methodology for data representation and the use of Structured Query

Language (SQL) became the standard method of interacting with relational databases,

research focused on converting natural-languages inquiries into SQL.

In a 1968 revised version of his dissertation, Bobrow discusses the reasons for

wanting to use natural languages rather than computer programming languages to interact

with a computer. His reasons from the 1960s are still valid. The reasons include avoiding

the need to train a casual user of computers in a programming language and

―Programming languages.... cannot describe a problem, only a method for finding a

solution to the problem‖ (p 148-9).

He continues by setting up a framework and ―criteria for evaluating question

answering systems‖ (p 150). The four criteria measure the level or depth of understanding

of a natural language, the extensibility of the system, the level of knowledge of the

internal structure of the system by its users and users‘ interactions with the system.

Bobrow proceeds into a detailed analysis of communication, both spoken and

written. He introduces the concept of kernel sentences, those simplest sentences, ―the

listener can understand directly‖ (p158). He considers both the generation of sentences

and the analysis (parsing) of sentences at multiple levels: syntactic, semantic and

deductive. The deductive component is Bobrow‘s software, STUDENT, in its use of facts

to return answers to a user‘s question(s).

Hendrix, et al., describe a query system, whose domain of knowledge is Navy

data. In their paper they give examples of numerous simple queries, ―How long is the

Philadelphia[?]‖ (1978, p 110). This would appear to be what Bobrow describes as a

kernel sentence. It consists of a query of a single fact about a single item in the database.

They include a section on special features of their software that include a spelling

corrector, e.g. ―Constallation‖ is corrected to ―Constellation‖ (p 112,124), the ability to

process elliptical queries, those that refer to a portion of a prior query.

Sidner (1979) shows how to parse sentences that contain anaphoric references in

the context of a conversation. One common situation is resolving the referent of

pronouns. Her research looks at sentences as part of a conversation which provides

context and not just as isolated statements.

Up to this time, researchers presented examples using programs in the

programming langauage LISP, with little mention of the mechanisms used to store data.

Petrick (1982) demonstrates the parsing of English queries with LISP, but creates SQL

queries to be run against a relational database. The queries are no longer just simple fact

based queries, but complex so-called aggregate functions in databases, those that require

some operation be performed on selected elements of the database. Additionally Petrick

presents methods for parsing questions with compound conditions.

Thompson et al. 1983 describe a menu-based system that allows end users to

construct queries in English. The guided nature of the menu-based approach assures that

the question will be well formed and that the application will be able to construct a

database query. As the technology of ordinary interaction changes, so does the

methodology for creating queries.

Tomita 1987 details the use of a context free grammar (CFG) to parse English

questions. He explains the extensions that are needed to be able to parse natural

languages and also the data structures that result from his approach. His algorithm for

parsing uses a complex data structure that he calls a ―graph-structured stack,‖ (p31)

where a traditional parser would use a simple stack of elements with no additional

structure.

Johnson and Bryant take relaxed approach to parsing English for queries,

recognizing that even if a query is ungrammatical English it may still contain all the

necessary components to construct a query that will successfully run against a database.

They give the example ―Who die 1787?‖ and describe it as ―ungrammatical, but

meaningful as a request for information‖ (Johnson & Bryant, 1994, p 222).

Hallett (2006) describes a portable system for generating natural language queries

against a database. The novel feature of this system is that it will pre-compute the

possible options available to a user of the system and present them in a menu or table

driven user interface. This would appear to be a modern implementation of Thompson‘s

(1983) approach.

In a recently published interview, Marvin Elder of Semantra describes how his

company‘s products using ―Conversational Analytics‖ exceeds the convention business

intelligence tools currently available by being able to ―redefine concepts with business

jargon and abbreviations … [to] get real-world conversation between non-technical users

and the enterprise data.‖ (Erickson, 2008-March, np). This illustrates the path of many

technologies that begin as research on basic questions and end up as a product.

On research methodology, Vassilou et al. present a study of computer users

creating database queries using a natural language tool and creating queries directly using

SQL. They present a detailed approach to both forming hypotheses and the analyses that

should be conducted on the differences between natural language and SQL queries.

 The literature shows that research tracks both the communities where it is

conducted and uses the technologies available at the time. LISP was the lingua franca of

the Artificial Intelligence community at MIT where both Bobrow and Sidner worked and

thus it is no surprise to find all of their examples in LISP. Once database technology had

been standardized using the relational model and SQL, accesses to databases was almost

always through the intermediate step of using SQL. Additional literature needs to be

reviewed to determine what additional standard tools of computer science can be brought

to bear on the problem of parsing English, or any natural language, for the purpose of

constructing database queries.

3. Methodology

The English language allows one to ask a question in many different ways. All of

the various forms of the question may have the same answer. While it may be easy for a

speaker of the language to recognize the equivalence of the questions, it is not necessarily

so for a computer program that has the task of recognizing questions. In contrast there

may be only a few or even only one (preferred) way to formulate a relational database

query. In order to investigate the tools and methods needed to translate English questions

into queries that can be run against a relational database management system, it is

necessary to have a number of questions that can be used as test cases. The initial

problem investigated was simple ―newspaper‖ questions of who, what, where, when and

how (many) and what is necessary in the grammar rules to be able to successfully parse

these questions.

In this study a relational database with a small number of tables was used to

explore these questions. The database consisted of two tables representing ―objects‖ —

persons and movies, and two tables that related persons to movies either as an actor or as

someone who had a major role in the creation of the movie. Note that there could be

multiple rows relating a person to a movie as either an actor or crew or both. SQL queries

were written that would produce answers to common questions of who did what in a

movie. Once the queries had been tested and produced reasonable results for test cases,

the queries were rewritten as template strings that could have names, roles or jobs filled

in by the translator and printed as queries to the database.

The set of all jobs that are stored in the database corresponds directly to the words

that need to be recognized as verbs in the translator. This need not be a one-to-one

correspondence as a person may wear several hats in the production of a movie or an

actor may play multiple roles. The query processor rules were written to treat both verb-

form and noun-form queries as equivalent; for example ―Who directed…?‖ and ―Who

was the director of…?‖ will result in the same query template being used.

It is possible that a sentence is syntactically correct according to the rules of the

query processor, but nonetheless may not be meaningful in English. As an example,

―Who die 1787?‖ is described as ―ungrammatical, but meaningful as a request for

information‖ (Johnson & Bryant, 1994, p 222). The tool accommodates such

ungrammatical but meaningful queries.

The query processor has employed a simple mechanism for handling pronoun

references. Every time a noun or noun phrase is encountered in the processing of a query,

it is saved for use in the event a subsequent query uses a pronoun. The query processor

makes no attempt to ensure that a pronoun it encounters makes sense in relation to the

remembered noun. In the current implementation, no checks for gender or number are

performed. This is an area that could be further explored to improve the conversational

nature of the query processor.

The enormity of the English language dictates a small subset of possible sentences

be analyzed for translation into database queries. Additionally the ―domain of inquiry‖ or

the contents of the database to be queried needs to be narrowly focused. The attributes

and relations in a database determine what questions can be asked of the database. Even

with the simple movie database, complex queries that would require a logical connective

between two attributes weren‘t examined. Any of the simple queries could be extended

into a complex query by the addition of a restrictive clause that referred to other attributes

in the database.

4. Conclusions

There are several advantages to the approach discussed in this paper to building a

natural language processor front end to a database: It uses tools that are robust, reliable

and freely available. In choosing to use both a grammar-driven parser generator as the

tool for creating a query processor and SQL as the target result of the translation, the

work of hand-coding a parser and a database system is avoided. The programming was

done using widely known languages (C and SQL.) Lastly, a person who uses this tool to

query a database doesn‘t need to learn a new language to do so.

Appendix

1. Database schema
ask away! Who played Luke Skywalker in "Star Wars"?

select

 p.name

 from film f, person p, cast c

 where

 c.character like "%Skywalker%"

 and p.row_id = c.person_id

 and f.row_id = c.film_id

 and f.Title like "%Star Wars%";

2. Conversation with the query processor.

openbase 1> select

openbase 2> p.name

openbase 3> from film f, person p, cast c

openbase 4> where

openbase 5> c.character like "%Skywalker%"

openbase 6> and p.row_id = c.person_id

openbase 7> and f.row_id = c.film_id

openbase 8> and f.Title like "%Star Wars%"

openbase 9> go

Data returned... calculating column widths

Name

Mark Hamill

1 rows returned - 0.003 seconds (printed in 0.003 seconds)

3. Database processes the generated query.

References

Bobrow, D.G. (1968). Natural language input for a computer problem-solving system. In

M. Minsky, (Ed.), Semantic information processing. Cambridge, Mass: MIT

Press.

Codd, E.F. (1970). A Relational model of data for large shared data banks.

Communications of the ACM 13(6): 377–387. doi:10.1145/362384.362685

Erickson, J. (2008, March). Natural language and database technology, Dr. Dobb‘s

Journal. CMP Media. Retrieved February 8, 2009, from

http://www.ddj.com/database/20690463

Flowers, T.H. (1983, July). The Design of Colossus. Annals of the History of Computing,

5(3) pp239-252. Retrieved February 8, 2009, from

http://www.ivorcatt.com/47c.htm

Hallett, C. 92006) Generic querying of relational databases using natural language

generation techniques. Proceedings of the fourth international natural language

conference. Morristown, NJ: Association for Computational Linguistics. 95-102

Hendrix, G.G., Sacerdoti, E. D.. Sagalowicz, D., & Slocum, J, (1978, June). Developing

a natural language interface to complex data. ACM Transactions on Database

Systems, 3(2), 105-147. New York, NY: ACM. doi:10.1.1.17.3033

Johnson, R.D. & Bryant, B.R. (1994). A quick method for answering wh-questions in a

natural language database interface. Proceedings of the 7
th

 Florida artificial

intelligence research symposium. 221-225. Retrieved March 8, 2009, from

http://www.cis.uab.edu/bryant/papers/flairs94.pdf

Johnson, S.C. (1978). Yacc: Yet another compiler-compiler. In UNIX programmer’s

manual. Murray Hill, NJ: Bell Telephone Laboratories.

Oettinger, A. G. (1960). Automatic language translation. Cambridge: Harvard University

Press.

Petrick, S.R. (1982). Theoretical/technical issues in natural language access to databases.

Proceedings of the 20th annual meeting on Association for Computational

Linguistics. Morristown, NJ: Association for Computational Linguistics

Reiss, S. (2003, December). Hope is a lousy defense. Wired, 11(12). Retrieved February

8, 2009, from http://www.wired.com/wired/archive/11.12/billjoy.html

Sidner, C. (1979). Disambiguating references and interpreting sentence purpose in

discourse. In P. Winston & R. Brown, Artificial intelligence: An MIT perspective

Vol. 1., Expert problem solving, natural language processing, intelligent

computer coaches, representation and learning. The MIT Press series in artificial

intelligence. Cambridge, Mass: MIT Press.

Thompson, C. W., Ross, K. M., Tennant, H. R. & Saenz, R. M. (1983). Building usable

menu-based natural language interface to databases. In Schkolnick, M. & Thanos,

C, (Eds.), Proceedings of the 9th international conference on very large data

bases. San Francisco, CA: Morgan Kaufmann. 43-55. doi:10.1.1.99.3690

Tomita, M., (1987, January-June). An efficient augmented-context-free parsing

algorithm. Computational Linguistics, 13(1-2), 31-46. Retrieved June 4, 2009,

from http://acl.ldc.upenn.edu/J/J87/J87-1004.pdf

http://www.wired.com/wired/archive/11.12/billjoy.html

Vassiliou, Y., Jarke, M., Stohr, E. A., Turner, J. A., & White, N. H. (1983, December).

Natural language for database queries: A laboratory study. MIS Quarterly 7(4),

47-61. Retrieved march 24,2009, from http://www.jstor.org/stable/248746

