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Abstract

We propose and implement a new image compression algorithm. Beginning with a planar 
straight-line graph created via image segmentation software, we create a modified dual 
graph consisting of triangles, with a triangle face corresponding to every polygon vertex. 
Using the Edgebreaker algorithm, we compress the connectivity of the triangle mesh (at a 
rate of about two bits per polygonal vertex) and encode the vertex and color data in the 
order  of  the  connectivity  of  the  triangle  mesh.  From this  connectivity  data,  we  can 
reconstruct  the  triangle  mesh  from  which  the  polygonal  dual  graph  (the  original 
segmentation)  is  rebuilt.  For  high  compression  rates,  we  expect  that  our  algorithm's 
compression ratios will be competitive with those of the JPEG and TIFF file formats, 
while still retaining the essential features of the image.



1. Introduction

Image compression is becoming increasingly important as image resolutions continue to grow 
and  demand  increases  for  transferring  and  storing  the  images.  Although  the  standard 
compression methods such as JPEG and TIFF have proven themselves highly effective in many 
cases, it is important to continue to examine new and unexplored avenues of image compression.

Traditional  image  compression  techniques  make  use  of  a  wide  variety  of  strategies.[2] Most 
simply, general lossless compression techniques such as run-length encoding or various kinds of 
entropy encoding are common practice.  The latter  may take the form of Huffman encoding, 
which assigns variable-length binary strings to each distinct element in a data-set based on its 
relative  frequency,  or  arithmetic  encoding,  which  does  not  split  up the  data  into  pieces  but 
compresses multiple elements at once.

Quantization is frequently employed to provide lossy compression. After quantization, a near-
continuous data-set (such as the color spectrum) is broken into distinct sections, which can be 
represented  much  more  efficiently.  Lossy  image  compression  usually  takes  advantage  of 
information unique to  images:  which data  is  valuable  to  the viewer,  and which data  can be 
omitted. For example, JPEG compression splits the image up into blocks, then encodes each 
block with varying levels of detail depending on what it contains. A complex operation blurs the 
data inside each block slightly, capitalizing on the fact that images (especially natural ones) often 
lack sharp edges. In certain situations,  removing sharp edges is not desirable.  Our technique 
indirectly deals with this problem because it is approaches the issue in a different way.

We base our compression on segmentation. Segmentation software (we utilized eriol, developed 
by Professor Olaf Hall-Holt[10]) returns one or several planar straight-line graphs (PSLGs) which 
are segmented representations of parts of the original image. Each PSLG is a polygonal mesh, 
which we then compress.

2. Duality

Figure 1: Original, segmentation, and .fim file

Beginning with a standard format image, we convert the image into a .ppm file and then obtain a 
segmentation using the eriol segmentation program. From this segmentation, we can use another 
function of eriol to obtain the .fim file. This file contains the vertices from the segmentation 
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listed  counter-clockwise  for  each  polygon,  followed  in  the  same  line  by  color  data  for  the 
polygon. Thus the .fim file contains a polygonal mesh of the image.

By using  the  graphical  property  of  duality,  we can  reduce  the  problem of  compressing  the 
segmentation's graph significantly. Duality refers to the fact that one mesh can be translated into 
another: for every vertex in the primal (original) mesh, there is a corresponding face in the dual 
graph, and likewise every face in the primal matches a vertex in its dual. Thus the number of 
polygons which touch each primal vertex is the number of sides of the dual polygon. In Figure 2, 
the black lines represent a portion of a primal mesh, and the blue triangles make up a portion of 
its  dual.  This  duality  maintains connectivity  data  from the original  mesh,  and the color  and 
vertex data from the original mesh correspond to the appropriate vertices and polygons in the 
dual mesh.
 

Figure 2: Polygonal Mesh Duality

There are many ways to compress a mesh, but the most efficient algorithms work with triangle 
meshes.[3,6,7,9] Since the vertices and faces of the original graph switch in the dual graph, if the 
original polygonal mesh contains only degree three vertices, the corresponding dual mesh will 
contain only triangles. We can store the color and vertex data in the image by associating every 
vertex in the triangle mesh with a color and every face with a vertex location (from the original 
polygonal mesh).

There are many special cases to deal with before a triangle mesh can be created through duality 
from a .fim polygonal mesh. The Edgebreaker algorithm was designed for compressing triangle 
meshes which are 2D manifolds. This means that it must be possible to traverse the entire mesh 
without running into holes or edges. Once we have handled the cases of vertices that are not 
degree three, we must add a polygon which connects all the outer edges in order to make the 
mesh  homeomorphic  to  a  sphere.  This  “infinity  polygon,”  which  is  only  conceptual  when 
represented in 3-space, is achieved by using a “point at infinity” in the dual graph, to which 
multiple “triangles at infinity” connect. Thus, after creating the dual graph, we arrive at a 2D 
manifold whose connectivity can be compressed utilizing the Edgebreaker algorithm.
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Figure 3: Triangle mesh with infinity point

In addition to adding the infinity polygon, we must also deal with vertices not of degree three. At 
this point in the compression, vertices of degree two are ignored and polygons with these vertices 
are treated as though the degree two vertices do not exist. However, we retain the vertex and 
color data associated with these degree two vertices and encode them later in the algorithm.

Figure 4: Greater than degree three splitting

Degree four or higher vertices are split into multiple vertices of degree three. Although visually 
is it easier to see the multiple vertices as existing in separate locations, in reality they coexist at 
the same location as separate entities. We use a counter-clockwise sort  around the vertex to 
determine which polygons can be split into which vertices.

3. Degree Two Vertices

Dealing with the degree two vertices in the polygonal mesh before constructing our dual graph 
presents many more problems than do polygonal vertices of degree greater than three. A vertex 
which occurs in only two polygons cannot be changed into a degree three vertex without adding 
an extra edge to the polygonal mesh, increasing the number of polygons by splitting one polygon 
into two. However,  the resulting polygons would hold redundant color data and result  in an 
unnecessary increase in compressed file size. Instead, we follow a different procedure.

Refer to Figure 5 below. A sequence of consecutive degree two vertices in the polygonal mesh (g 
and h) will always divide two polygons since it is composed entirely of degree two vertices (2 
and 4). Moreover, it will always lie between two degree three vertices (d and e), for if it did not 
then it would describe an open, disconnected polygon, an impossibility because of the PSLG 
assumption above. We encode each degree two sequence by listing the relevant information: first 
degree three vertex, degree two vertices, second degree three vertex, two polygon numbers. The 
vertices are listed in the order they appear counterclockwise around the border of the lowest 
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numbered polygon. In this case, we have

                                           e h g d 2 4                                  (1)

Decompression can recover the degree two data given in the list above. To find where the list of 
degree two vertices (h g) should be inserted (and in what order), a polygon ordering convention 
is followed. Duality equates this ordering with a triangle vertex ordering which the triangle mesh 
traversal described below accomplishes. Thus the polygon numbers are encoded according to the 
original mesh traversal's numbering of them, and decoded in the same manner. By looking at the 
reconstructed  vertices  (ordered  counterclockwise)  of  the  relevant  polygons,  we can  find  the 
sequence (e d) or (d e) exactly once in each of the two bordering polygons. The degree two 
vertices will occur in the encoded order for the lower-numbered polygon and in reverse order for 
the other polygon. Thus decompression makes the following changes after the triangle mesh is 
traversed and the polygonal mesh (sans degree two 
data) is reconstructed:

original encoded final
2: e h g d d e d e h g
4: f j i c d g h e f j i c d e f j i c d g h e

Even though the sequence of a polygon's vertices may not be reconstructed exactly as before, the 
vertices will still be in counterclockwise order, preserving the polygon. Encoding the raw data in 
(1) is relatively expensive; however, using delta encoding, we expect to utilize the neighboring 
degree three vertices (d, e) to arrive at a much more efficient compression method for degree two 
data. 

Figure 5: Degree two reconstruction

4. Triangle Mesh Compression

After  a  triangle  mesh  is  created  via  duality  applied  to  the  segmented  polygonal  mesh,  we 
compress its connectivity using the Edgebreaker algorithm, designed by Rossignac et al.[6] This 
algorithm walks through the 2D manifold triangle mesh, assigning a letter from the set {C, L, E, 
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R, S} to each consecutive triangle. Each letter in this set describes one of the five distinct ways 
in which a triangle can relate to its adjacent triangles as the mesh is traversed. These relations 
have to do with whether the neighboring triangles and the corners opposite the corners in the 
current triangle have already been visited by the traversal.  See [6] for an explanation of the 
algorithm, and Figure 6 for an example.

Figure 6: Edgebreaker applied to part of a triangle mesh

Due to this encoding strategy, only five distinct binary representations of maximum length three 
bits are needed for encoding. After applying Huffman encoding, Rossignac et al. arrived at the 
following representations:

C – 0     L – 110    E – 111    R – 101     S – 100

After compression, the combinatorial structure of the entire triangle mesh is represented by a 
CLERS sequence. Construction of the CLERS string depends on two arrays of booleans and two 
vectors of integers. The arrays designate which vertices and triangles have already been marked 
with a letter. One of the vectors represents the set of vertices in the dual mesh, numbered in the 
order in which they are encountered, and the other lists the triangles in order. The vertex ordering 
is used to store the color data for the polygonal array later,  as  it  is  also an ordering on the 
polygons in the original mesh. Likewise, the ordering on the dual mesh's triangles will be used to 
encode the vertices of the polygonal mesh.

Along with  the  previously  explained  assumptions  of  Edgebreaker,  the  Edgebreaker  traversal 
requires the ability to find the corner lying opposite of a given corner of the triangle mesh.  In 
order to find opposite corners, we construct an array before Edgebreaker is executed holding 
pointers to the corners opposite each corner in the triangle mesh. To construct this array, our 
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algorithm begins with the corner at the infinity point of one of the infinity triangles and finds its 
opposite edge within the triangle. Once this edge is found, the algorithm examines the vertex 
which is  opposite  to  this  edge  in  the  adjacent  triangle  (the triangle  which shares  the  edge). 
Though the algorithm normally searches for triangles which share the edge in question with the 
original triangle, when there are more than two triangles which share one edge there are several 
possible opposite corners.

The following figure is one illustration of this problem. Four “infinity triangles” all share the 
same edge. Thus there are two possible vertices which could be opposite the current corner, only 
one of which is correct. To resolve this issue we check to see if a polygon edge (in the primal 
graph) connects the possible opposite corner's triangle with the current vertex. If this is so, then 
this is the correct opposite vertex. See Figure 7.

Once we have the proper opposite corners, we can produce the CLERS string which dictates how 
we store the accompanying polygon color and vertex data and convert all this to a binary file.

Figure 7: Opposite Problem.
Blue - Triangle mesh

Dashed – Triangles containing infinity point
Orange dashed lines - Shared edge between the four infinity triangles

5. Compression and Decompression

Using the Edgebreaker method described above, along with the detailed opposite finding and 
degree two encoding, we compress the data for the polygonal mesh. We start the Edgebreaker 
algorithm at  the infinity  point  of the triangle  mesh (representing the infinity  polygon in  the 
polygonal mesh), thus ensuring that we will know which polygon is the infinity polygon (so that 
we can remove it from the final polygonal mesh product) as we decompress the image.

Once  we have the  triangle  mesh compressed via  Edgebreaker,  we must  include information 
about the location of each polygon vertex and the color of each polygon. As described above, we 
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use two vectors of values, one for vertices and one for colors. Since every triangle corresponds 
with a  vertex in  the polygonal mesh,  the vertices can simply be printed in  the order  of  the 
CLERS sequence  and no other  identifying information  is  needed.  Since every  vertex  of  the 
triangle mesh represents a face in the polygonal mesh, the color data can be stored as a list of 
numbers. Every time we visit a vertex for the first time, it is represented in the CLERS string as a 
C. Therefore,  we can print  the colors into the compressed file in the order of the Cs in the 
CLERS string,  thus  eliminating the  need for  identifying  information.  Once the connectivity, 
vertex, and color data has been written to the compressed file, all that remains is the encoding of 
the degree two vertices, described above.

When decompressing the image, we first decode the CLERS string as the Edgebreaker algorithm 
describes.  We  then  use  the  property  of  duality  to  convert  our  triangle  mesh  back  to  the 
corresponding  polygonal mesh.  Using  the  order  of  the  Cs  found  in  the  CLERS  string,  we 
reassign the colors to each polygon. From the order of the triangles given in the CLERS string, 
we assign locations to the vertices in the polygonal mesh. Due to the way we split the degree 
four vertices, we have to keep only the first occurrence of any repeated vertex. Finally, we can 
output a .fim file identical to that which was compressed.

6. Results

Our algorithm has the capability to compete with standard lossy image compression algorithms 
such  as  JPEG,  especially  at  high  compression  rates.  It  works  well  with  images  containing 
relatively large areas of the same or similar colors, as these area produce large polygons during 
segmentation, each of which can be represented by just one triangle vertex in the dual graph. 
Geometric patterns and distinct edges appear sharper after HSF compression than after JPEG 
compression because the edges of the image are already similar in nature to a segmentation's 
edges. JPEG tends to blur these important details.

The test image shown below comes from the well-known Tsukuba image used to test image 
segmentation algorithms. The piece of this image that we used is shown below: first the original, 
then a low quality JPEG, and finally an HSF (which has a roughly equivalent file size). Table 1 
illustrates the compression ratios achieved by each compression method. The gains reported by 
our compression method only reflect compression of the connectivity. As the vertex and color 
data  are  raw encoded  in  the  example,  we can  expect  much higher  compression  ratios  once 
quantization and delta encoding are  implemented.  The addition of gradient data  will  help to 
reduce the flat appearance of the HSF compressed image.
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original .ppm       quality 30 .jpg            .hsf

tsukubaSection.ppm: 80px x 100px
format size ratio
.ppm 25853 B
.jpg @ quality 70 1823 B 07.06%
.seg 5774 B 22.33%
.hsf 869 B 03.36%
.jpg @ quality 30 906 B 03.50%

Table 1: Results for test image

7. Future Work

At  this  time,  we  are  able  to  compress  the  connectivity  data  using  Huffman  encoding  at 
approximately two bits per triangle. We do not yet have the vertex and color data compressed, 
and in the future we plan to use a combination of run-length, delta, and Huffman encoding to 
compress this data. We may also employ quantization on the color data, limiting the number of 
colors slightly to decrease the file size.

The limiting factor in the compression process is the segmentation, as our own compression and 
decompression algorithms run quite quickly. Most sections of our program run in O(n log n) 
time; however a few remain which run in O(n2) time. These will all be changed to O(n log n), 
though they do not affect the overall runtime significantly.

One key element in functionality which we have yet to implement is the processing of islands. 
An island is any piece of a polygonal mesh which is not directly connected to the main graph. To 
implement  the encoding of  islands,  we will  treat  each as  its  own mesh and simply run the 
compression  and  decompression  on  each  piece,  combining  them  together  at  the  end  of 
decompression into a single .fim file.

Figure 8: An island polygonal mesh within a segment of a larger polygonal mesh

8



A more intricate problem involves islands containing two or fewer degree three vertices. Because 
degree  two  vertices  are  essentially  ignored  when  making  the  triangle  mesh,  there  is  no 
information from which the order of the degree two vertices can be determined in such a small 
polygonal mesh. Two simple examples of this problem are an empty square or an envelope-
shaped  mesh,  which  could  be  found  as  islands  within  a  larger  image.  Figures  9  and  11 
demonstrate these degenerate cases. The square is the original island, but after removal of degree 
two vertices no data remains for encoding. After removing degree two vertices, the envelope 
becomes three lines connecting the same two points in the polygonal mesh, which results in only 
one edge in the triangle mesh.

Figure 9: Degree two problems: before and after removing degree two vertices

One way to solve this problem is by adding a border to every island, creating vertices of degree 
at least three on the edge.

Figure 10: Adding a border to a degenerate case

Adding a border adds polygons to the mesh and thus information to the compressed file, but this 
is our best solution to the problem at the moment. Another problem occurs if the above examples 
and similar cases are the entire polygonal mesh rather than just islands found within the mesh. In 
this  case,  adding  a  border  to  the  entire  mesh  resolves  the  issue  as  well.  Admittedly,  the 
probability of an image consisting entirely of these degenerate cases is low or nonexistent.

Figure 11: Possible Degenerate Cases
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While  the  Edgebreaker  algorithm  which  we  use  is  highly  effective  at  compressing  the 
connectivity of a polygonal mesh, the color and vertex coordinate data must be compressed using 
other methods. There are several traditional methods for compressing vertex data in polygonal 
meshes,  given  a  traversal:  exactly  the  situation  that  we  are  in  after  Edgebreaker.[1,4,5,8] One 
possibility for compressing vertex data is to use delta encoding to store the difference vector 
between  two  consecutive  polygonal  mesh  vertices,  rather  than  storing  each  vertex  location 
individually. Color data could also be compressed using delta encoding. Another technique for 
compressing these data is quantization, which results in lossy but more efficient compression. 
Along  with  these  data  specific  compression  methods,  we  could  also  apply  general  data 
compression techniques including run-length and entropy encoding.

We have made substantial progress regarding image compression based on segmentation thus far 
and expect even greater compression ratios in the foreseeable future with the implementation of 
above techniques.
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