

A Simple Judging System for the ACM Programming

Contest

Joseph Clifton
Computer Science and Software Engineering

University of Wisconsin – Platteville
Platteville, WI 53818
clifton@uwplatt.edu

Abstract

The University of Wisconsin – Platteville has been a host site for the North Central North
America (NCNA) regional of the ACM International Collegiate Programming Contest
every year since 2002. We are a small site, hosting a maximum of eleven teams. We
hosted a few times earlier in the 1990’s, but it wasn’t until 2002 that we started looking at
mechanizing the submittal and judging process.

At that time, we considered using the Programming Contest Control (PC2) system
developed at California State University, Sacramento. It is a generalized system and
hence is necessarily “complicated”. We had successfully developed submittal programs
for our lower-division programming courses and believed we could create a simpler
judging tool tailored for small contest sites. This paper presents our tool for automating
the judging for the ACM programming contest for a small contest site that uses
Windows-based computers.

mailto:clifton@uwplatt.edu

1. Background

The University of Wisconsin – Platteville has been a host site for the North Central North
America (NCNA) regional of the ACM International Collegiate Programming Contest
[1] every year since 2002. This programming contest is sponsored by IBM and has teams
participating from around the world. The NCNA region consists of Wisconsin, Iowa,
Minnesota, North Dakota, South Dakota, Nebraska, Kansas, Manitoba, and Ontario.
Thus, the contest includes all the states that are part of the Midwest Instruction and
Computing Symposium. The NCNA regional contest is held each year in late October or
early November. Since the region is geographically rather large, the contest is distributed
over several contest sites.

Our university hosts a maximum of eleven teams. We hosted a few times earlier in the
1990’s, but it wasn’t until 2002 that we considered mechanizing the submittal and
judging process. At that time, we downloaded the latest version of the Programming
Contest Control (PC2) system developed at California State University, Sacramento. [2]
The author doesn’t recall the exact details, but does recall struggling with the installation.
Perhaps there were campus restrictions on certain required components, or maybe it was
an issue of compatibility. In any case, we had developed submittal programs for course
work and believed we could create a simpler judging tool. So just prior to the 2002
contest, the author developed a lightweight windows-based tool tailored for small contest
sites such as ours.

The tool has gone through a few modifications since then, but the basic principle of
simplicity remains the same. The server runs on any windows system and requires
minimal setup. Furthermore, the tool allows most tasks to be performed with a minimal
number of mouse clicks and no typing. Checking program output is the only time a
keyboard is needed during the judging process, and even that could be eliminated by
using a GUI-based difference tool.

The server has an audio annunciation when a team submittal arrives. The judges then
select which program they wish to judge (in case more than one arrives at the same time).
Clicking a single button compiles, links, and runs the program, sending the output to a
file. The judges then run a difference program comparing the contestant’s output to the
judges’ output and if necessary, examine the output manually. When finished, the judges
select a status to report to the group and click a button to send back the status.

At the start of the contest, teams are issued a team number and a password, and are given
the client executable. They use the client to submit their programs and get back the
results. There are no user manuals or help files. The interface is so simple, contestants
don’t need them.

1

2. Other Contest Programs

Over the years, other programs have been developed to help support programming
contests. PC2 is probably the best known. Mary Richmond, Dave Bosley, Paul Meyers,
and Doug Lane created it in 1988 as a senior project. The system has evolved a great
deal since that time and continues to evolve. It is a “heavy-weight” solution, very
configurable and designed for handling both single and multi-site contests. The version
8.5 administration guide (released in 2003) is 89 pages long! The latest version of PC2 is
9.1. The versions after 8.5 don’t have new administration guides but instead have
“What’s new” documents that reference the 8.5 administration guide and a Wiki. The
current version of the team guide is seven pages long. [2, 3]

Significant improvements have been made to PC2 since the author first considered using
it. The author had also looked at PC2 three or four years ago, but still wasn’t convinced
to change. The latest version has simplified setup and includes auto-judging, but still has
a few issues. For example, when the author tried logging in with an invalid login name,
the system hung. Also, when the author forgot his server password, he spent about half
an hour searching through the documentation to find a fix before giving up and later
noticing the pc2reset.bat file. Other current bugs are listed in the Version 9.1 “What’s
New” document.

The PC2 “startup checklist for geniuses” from the version 8.7 documentation is: [2]

• Install PC2 by unzipping the PC2 distribution to the PC2 installation directory
• Add the Java bin directory and the PC2 installation directory to the PATH
• Add “.”, java/lib, and the PC2 installation directory to the CLASSPATH
• Modify the sitelist.ini file as necessary to specify each site server name
• Edit the pc2v8.ini file to point servers and clients to the server IP:port and to

specify the appropriate site server name; put the modified .ini file on every server
and client machine

• Start a PC2 server using the command “pc2server” and answer the prompted
question.

• Start a PC2 Admin client using the command “pc2admin” and login using the
name “root” and password “root”.

• Configure at least the following contest items via the Admin:
o Accounts (generate the necessary accounts)
o Problems (create one or more contest problems, specifying the problem

input data file if there is one)
o Languages (create one or more contest languages, specifying the language

name, compile command line, executable filename, and program
execution command line).

• Press the “Start Contest” button on the Admin “Time/Reset” tab
• Start a PC2 client on each Team and Judge machine and log in using the Admin-

created accounts and passwords.

2

• Start a PC2 client on the Scoreboard machine and log in using the “board1”
Scoreboard account/password; arrange for the scoreboard-generated HTML files
to be accessible to user’s browsers.

In version 9.0, the “sitelist.ini” was no longer necessary, since the values formerly
specified in that file were made interactively configurable.

The batch files PC2 uses to start its various programs are: [2]

• pc2reset - Creates a backup zipped archive of all existing PC2 databases, then
clears all databases to the state matching a fresh installation

• pc2server - Starts a PC2 Server
• pc2admin - Starts a PC2 Client expecting an Administrator login
• pc2team - Starts a PC2 Client expecting a Team login
• pc2judge - Starts a PC2 Client expecting a Judge login
• pc2board - Starts a PC2 Client expecting a Scoreboard login

Figure 1 shows the PC2 administrator program. The teams and judges were auto-
generated using the “Generate” button. The program has many options for creating and
modifying accounts, problems, languages, groups, etc. For example, when editing an
account, the display name, password, and group can be specified. In addition, there are
49 different permissions from which to choose! Fortunately, the program’s defaults are
satisfactory, so most options and features don’t need to be used.

Figure 1: PC2 Administrator Program

3

Figure 2 shows the PC2 Judge program. It allows programs received from the teams to be
executed and judgments to be returned to the teams. It also receives clarification requests
from teams and allows the judges to respond.

Figure 2: PC2 Judge Program

Figure 3 shows the PC2 Team program. It allows contestants to submit programs and
view the judges’ responses. It also allows teams to request clarifications and view all the
clarifications for all the problems. In addition, it shows the remaining contest time. The
interface is intuitive and simple to use.

The major differences between PC2 and the judging tool that we present in Section 3 are
that our tool requires less setup and has almost no options. Another way of saying this is
that our program is very “lightweight”, whereas PC2 is “heavyweight”. One piece of
functionality in PC2 that isn’t in our tool is the ability to handle problem clarifications.
We still use student runners for that. In addition, our tool currently doesn’t support auto-
judging, although it could easily be added. The reason it doesn’t exist now is that
typically the problems in the NCNA contest allow latitude in formatting and auto-judging
generally works best with strict output formatting requirements. Therefore, we have
semi-automated that function, as will be discussed in Section 3.

4

Figure 3: PC2 Team Program

DOMJudge is another example of a tool that supports programming contests. It has been
used in the ACM ICPC Northwestern European Programming Contest for the past three
years. It has a 39-page administrators’ manual, eleven-page judges’ manual, and an
eight-page team manual. The “cheat-sheet for those who've already installed DOMjudge
before and need a few hints” is: [4]

External software:

• Install the MySQL-server, set a root password for it and make it accessible from
all judgehosts.

• Install Apache, PHP and (recommended) phpMyAdmin.
• Make sure PHP works for the web server and command line scripts.
• Install necessary compilers on the judgehosts.
• See also an example command line for Debian GNU/Linux.

DOMjudge:
• Extract the source tarball and run ./configure [--enable-fhs] --prefix=<basepath>.
• Run make domserver judgehost docs or just those targets you want installed on

the current host.
• Run make install-{domserver,judgehost,docs} as root to install the system.

On the domserver host:
• Install the MySQL database using bin/dj-setup-database -u root -r install on the

domserver host.

5

http://home.a-eskwadraat.nl/~domjudge/snapshot/admin-manual/admin-manual-2.html#install_config:apt-getinstall

• Add etc/apache.conf to your Apache configuration, edit it to your needs, reload
web server: sudo ln -s .../domserver/etc/apache.conf
/etc/apache2/conf.d/domjudge.conf && sudo apache2ctl graceful

• Check that the web interface works (/team, /public and /jury) and check that the
jury interface is password protected.

• Add useful contest data through the jury web interface or with phpMyAdmin.
• Run the config checker in the jury web interface.

On the judgehosts:
• RedHat: useradd -d /nonexistent -g nobody -M -n -s /bin/false domjudge-run

Debian: useradd -d /nonexistent -g nogroup -s /bin/false domjudge-run
(check specific options of useradd, since these vary per system)

• Start the judge daemon: bin/judgedaemon

This is more work than we would be willing to do for our small site!

A paper was presented at the 2005 International Conference on Computer and
Information Technology in Bangladesh in which the authors describe online judging
software that they created using the .NET frameworks. In the paper, they primarily focus
on security and speed, neither of which is an issue for us. They also refer to PC2. The
paper seems to indicate it is still a work in progress. [5]

3. U WP Judging Tool

The UWP Judging tool consists of two stand-alone executables: a client and a server.
Both are windows-based GUI programs that don’t require installation beyond copying to
a folder on the host machine. They support C++, C#, and Java. They require that the
program source be in a single file. The tool does not automate the entire judging task,
but does automate most of it, and is a good compromise between functionality and ease
of setup and use.

3.1 Contest Server

Figure 4 shows the contest server. It is a stand-alone executable and requires no
installation. The judges copy it to any folder on a windows-based PC and double-click to
execute it. When the program is started, it creates a directory structure under the start-up
directory as shown in Figure 5 (assuming that the directories don’t already exist). There
is one folder for each program and a _Work folder.

The program assumes at most eleven teams and ten programs. These values are easily
changed, although that would require a rebuild of the Borland Builder project, i.e., they
are not customizable. The team names are fixed as Team1, Team2, etc. The program
names are fixed as Prog1, Prog2, etc. These also are not customizable.

6

Figure 4: Contest Server

On startup, passwords are generated for each team if they don’t already exist. These
passwords are also stored to a file called Student.dat and read back from that file on
subsequent restarts. A button exists to create a new set of random passwords if desired.
The passwords are only three digits long; however, that is sufficient security for our site.
It is highly unlikely that any of the teams at our site would do a brute force attempt at
using another team’s password, at risk of disqualification. Furthermore, the IP address of
a team’s assigned computer is appended to the submittal information, so the judges can
review it if foul play is suspected. The passwords are distributed to the teams during the
pre-contest warm-up session.

The right-hand panel of the Windows Explorer screen shown in Figure 5 gives an
indication of the server setup required. The judges input files must be put in the _Work
folder and must be named as ProbXin.txt, where X is the program number, in
hexadecimal. For some years, this was the naming convention used by the contest
director and no extra work was required. For other years, each input file needed to be
renamed. The files designated 0, 1, 2, etc., are the judges' output files. These can be
renamed to whatever the judges want. The comparison between the judges' output and
the submittal output is not automated (even though it would be easy to do so) due to the
usually lenient output formatting requirements. Instead, the judges use a difference tool,
such as diff.exe shown Figure 5. The judge who “drives” for our contest uses command-

7

line tools, which is also the reason the output files are named as they are. If another
judge were to run the server, it is likely a GUI-based tool, such as Beyond Compare,
would be used.

Figure 5: Contest Server Directory Structure

The right-hand panel of Figure 5 also shows two BAT files. These files are used to
specify the compiler commands for C++ and optionally, C#. For Java, it is assumed the
Java compiler (javac.exe) is in the Windows path. The names shown for these files are
the required names and are not configurable. For us, these files are quite short. For
example, Comp_CPP.bat invokes the Microsoft Visual Studio compiler as:

call "%VS90COMNTOOLS%"vsvars32.bat
cl /FeProg.exe *.cpp

It should also be pointed out that it is required that the executable produced by a C++ or
C# compiler be named Prog.exe, since the server depends on that when running the
program.

8

As programs arrive at the server, there is an audio annunciation and the submittal appears
in the “Programs to be Judged” panel as shown in Figure 4. The entry contains the
program number, team number, time of submittal, and IP address of the submittal
computer. The program is stored in a folder marked with the team name and arrival time
under the appropriate ProgX folder. For example, Figure 5 shows the T05_16_29_38
folder under the Prog5 folder. This folder contains the program submitted by Team 5 at
4:29:38 P.M.

The judge selects an entry in the “Program to Judged” panel and clicks the “Copy
Selected Program to _Work and Run” button to execute it. The judge then switches to
another program to compare the program’s output to the judges' output. In the case of
our contest, the judge switches tasks to a command prompt and runs diff. If the author
were a judge instead of the site coordinator, he would use Beyond Compare.

After comparing the outputs, the judge switches back to the contest server, clicks one of
the status selections, and then clicks the “Send Status of Selected Program” button. It
then sends the status back to the contest client and moves the selected entry to the
“Judged Programs” panel. The entry in that panel indicates the program number, team
number, status, and whether or not the notification was successful. If the judges have any
reason to rerun a submittal, they can click the “Copy Selected Program to _Work and Re-
Run” button.

There are two additional “administrative” buttons on the lower-left panel of the server.
One button is used to create the ContestClient.ini file, which consists solely of the Server
IP address. When that button is clicked, the server’s IP address is retrieved and written to
the file. The other button is used to disable the “Make New Passwords” button and
“Copy IP Address to ContestClient.ini” button. This can be clicked after setup so these
buttons aren’t accidentally clicked during the contest (which happened during the first
contest).

3.2 Contest Client

Figure 4 shows the contest client. It is a stand-alone executable and requires no
installation. The contestants copy it and the ContestClient.ini file to any folder on their
designated computer and double-click to execute it. Teams are issued their team number
and password during the pre-contest warm-up session.

When the team wishes to submit a program, they select their team number, the program
number, and type in their password. These selections remain until changed. Then they
browse to select the program file to submit, and finish by clicking the “Submit the Files”
button. The name of the button is a little misleading, since the tool only supports single
file submission. The author had expected to allow multiple files at some point, but that

9

hasn’t happened yet! It should be noted that in the “Source Files to Send” panel, the
author has selected a program submitted by Team 7 in last year’s contest.

The top panel on the right of the contest client shows all the submitted programs. The
team number, program number, and time of submittal are displayed. The bottom panel
on the right of the contest client shows the judged programs. The program number, team
number, submittal time, and judged status are displayed.

There are no other options. There are no user manuals or help files. The interface is so
simple, contestants don’t need them. One might notice that the language for the program
is not specified. The contest server assumes the programming language from the file
extension.

Figure 6: Contest Client

4. Conclusion

The UWP Judging system is a simple windows-based tool. It mechanizes most of the
judging tasks. One notable exception is output comparison; however, that is by choice,
since adding that feature would be relatively easy. It has less flexibility than a tool such
as PC2. For our tool, there is practically no customization that can be done except for
setting up the C++ compiler commands. Team names, passwords, program names,

10

11

output file names, etc., are all fixed. However, it is for this reason that it is less
complicated. Setup for our tool is very quick. The number of teams allowed is also fixed
at a maximum of 11. This could easily be changed but would require a recompilation to
change it.

The UWP Judging program has the basic functionality of PC2 with one major exception:
problem clarifications. The UWP Judging system has no provision for handling these.

References

[1] ACM International Collegiate Programming Contest, Available at

http://acm.baylor.edu/
[2] Programming Contest Control System developed at California State University,

Sacramento, Available at http://www.ecs.csus.edu/pc2/
[3] PC2Wiki, the Wiki dedicated to information about PC2, Available at

http://pc2.ecs.csus.edu/wiki/
[4] DOMjudge, Automated Judge System to Run Programming Contests, Available at

http://domjudge.sourceforge.net/
[5] Arefin, A., et al., “Secured Programming Contest System with Online and Real-time

Judgment Capability”, International Conference on Computer and Information
Technology, Bangladesh, 2005

http://acm.baylor.edu/
http://www.ecs.csus.edu/pc2/
http://pc2.ecs.csus.edu/wiki/
http://domjudge.sourceforge.net/

	1. Background
	2. Other Contest Programs
	3. U WP Judging Tool
	3.1 Contest Server
	3.2 Contest Client

	4. Conclusion
	References

